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Abstract

In recent years, powerful design tools for linear time-invariant multivariable control systems

have been developed based on direct parameter optimization. In this report, an algorithm

for reliable optimal control synthesis using parameter optimization is presented. Specifically,

a robust numerical algorithm is developed for the evaluation of the H2-1ike cost functional

and its gradients with respect to the controller design parameters. The method is specifi-

cally designed to handle defective degenerate systems and is based on the well-known Pad_

series approximation of the matrix exponential. Numerical test problems in control synthe-

sis for simple mechanical systems and for a flexible structure with densely packed modes

illustrate positively the reliability of this method when compared to a method based on

diagonalization.

Several types of cost functions have been considered: a cost function for robust control

consisting of a linear combination of quadratic objectives for deterministic and random

disturbances, and one representing an upper bound on the quadratic objective for worst-
case initial conditions.

Finally, a framework for multivariable control synthesis has been developed combin-

ing the concept of closed-loop transfer recovery with numerical parameter optimization.

The procedure enables designers to synthesize not only observer-based controllers but also

controllers of arbitrary order and structure. Numerical design solutions rely heavily on

the robust algorithm due to the high order of the synthesis model and the presence of

near-overlapping modes. The design approach is successfully applied to the design of a

high-bandwidth control system for a rotorcraft.
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Chapter 1

Introduction

1.1 Optimal Control Synthesis and Parameter Optimiza-
tion

Traditional design methods in linear optimal control for continuous-time systems have been

extensively treated [1]. Development of these control systems is usually based on the char-

acterization of the control problem under the setting of optimization of the two-norm of a

set of controlled output responses to random disturbance inputs or initial conditions. Ad-

ditional consideration of design robustness is taken by formulating the problem to include

H_-norm bound constraints for a class of additive and multiplicative uncertainties applied

at the plant inputs and/or outputs. Solutions are obtained for both the state- and output-

feedback design problems and involve, in the majority of cases, solving an appropriate set

of algebraic Riccati equations [4, 5]. Theoretical studies of these approaches have been a

major concern of researchers in the control field and a major breakthrough has been made

in recent work by Stoorvogel [13, 14].

An alternate and less often mentioned design option for robust multivariable control is

based on direct numerical optimization of a H 2 performance objective with a given pre-

specified controller structure. Early work in this area has been published by Levine and

Athans [15], Anderson and Moore [16], and more recently, an extensive review of the subject

was presented by Makila [17]. More recently, a new look into parameter optimization as it

applies to multivariable control synthesis is provided by Ly [18] where he used a quadratic

performance objective based on a finite-time horizon and the nonlinear optimization tech-

nique of Ref. [21].

Synthesis of robust multivariab]e control systems using nonlinear constrained optimiza-

tion has become increasingly important in recent years [40] [41] due to the design flexibility

this approach offers. A numerical design package SANDY was developed to provide for

the first time such an effective controller design tool. The plant and controller models are

assumed to be linear and time invariant. The controller can possess a non-observer based

structure and be of much lower order than the plant. To ensure good responses in criti-

cal spectral regions, a frequency-shaped H 2 performance objective can be implemented by

means of bandpass filters. Robustness can be enhanced by simultaneously optimizing over

several plant model perturbations from a given nominal condition. Other control design

specifications, including robustness, can be achieved via the concept of Closed-Loop Trans-

fer Recovery [11]. This procedure, to be discussed further in Chapter 5, allows designers

to achieve design performance and robustness starting from a satisfactory state-feedback



controllaw.
Developmentof reliablenumericaloptimizationfor linearoptimalcontrolsynthesisre-

quireseffectivealgorithmsfor the evaluationof the objectivefunctionand the associated
gradients.Onenumerical]imitation in the designoptimizationschemedevelopedin [18]
ariseswhendegeneratemodesoccurin the closed-loopsystem.The correspondingsystem
dynamicsmatrix will containdefectiveeigenvalueswhicharemostoftenvisualizedin Jordan
blocks.Occurrenceof thesedefectiveeigenvaluesbecomesmorefrequentwhena multiloop
control law is beingsynthesizedbasedon frequency-shapeddesignobjectivesor distur-
banceswith degeneratepowerspectra(e.g. transverseDrydenturbulencespectrain wind
turbulence). Degeneratesystemscanalsooccur in the designprocedureof Closed-Loop
TransferRecovery(CLTR).Here,closed-loopdynamicsfrom anoutput-feedbackdesignin
the CLTR proceduretend to overlapthoseattainedunderstatefeedback.With inexact
arithmeticandlargesystemmatrices,theseconditionsleadto neardegeneratesystemsand
the appearanceof Jordanblocks.

Key Research Motivation

Experience with the optimization of low_)rder output feedback controllers in H 2

inspires a search for a systematic way to include robustness in the design without

tedious adjustment of design weights. One approach would be to use a different cost

function, such as one based on worst_ase initial conditions. Experience with this

worst_case cost function indicates that while it would offer some help with robustness

in particular, one would hope for a more comprehensive design methodology to obtain

a more complete set of desired properties. Such is the promise of closed-loop transfer

recovery (CLTR), which is based on recovering the properties of a state-feedback

design with an output-feedback controller.

Numerical optimization based on gradient information promises fast convergence, but

it requires a precise calculation of the cost function and its gradient with respect to

the controller design parameters. Existing numerical algorithms for these calculations

lose accuracy as degeneracy in a system mode is approached and several of the cor-

responding eigenvalues become more defective. This loss of accuracy occurs in many

design situations related to control of flexible structures with closely packed modes, or

use of model matching and/or frequency-shaped objectives. Experience with closed-

loop transfer recovery involving systems of reasonable size almost always generates

defective eigenvalues.

The terminology "more defective" is not common usage. However, this terminology

does properly express the quantitative nature of the loss of accuracy that prevails in

existing eigenvalue-eigenvector decomposition routines. One can define a tolerance,

based on the condition of the eigenvector matrix, where inaccuracies in the established

gradient calculation will noticeably affect the optimization process.

In this research, several algorithms tolerant of defective systems have been considered.

The most successful one involved converting the gradient computation to an exponen-

tial calculation and using the well-known Padd series for the matrix exponential. The

Padd series itself is applied to a scaled matrix, and the careful term-by-term evalua-

tion combined with a judicious scaling process have enabled this approach to handle a



widerangeof systemmatrices.In additionto the theoreticalassurances,this formula
wasdemonstratedto work in manyselectedtest cases.

The proposedrobustalgorithmwill providean enablingtechnologyfor closed-loop
transferrecoverywithin the frameworkof numericaloptimization. Systemmatri-
cesunder the CLTR designproceduretend to containJordanblocksowingto their
sizeand the presenceof overlappingpoles. Within the CLTR framework,the best
possibleperformanceof an output-feedbackcontrollercan be predictedby exam-
ining the systemtheoreticpropertieswith the SpecialCoordinateBasis(SCB).In
addition, a low-orderoutput-feedbackcontrollercanbe employedto recovermany
state-feedbackpropertiessuchas robustnesswithout the tediouseffort of manipu-
lating penaltyweightsand the manyensuingdesigniterations. A demonstrationof
CLTR on a rotorcraft problemcontaininga reasonablylargesystemmodel is pre-
sented.A systematicdesignprocedureproducesencouragingresultsovertwo flight
conditions.The numericaloptimizationpart of this procedurewouldnot havebeen
possiblewithout the robustgradientformulation.

A moreidealapproachfor gradientcalculationaimsat combiningrobustnessof the
newgradientalgorithmwith the speed,low memoryusage,andscaleinsensitivityof
the originaldiagonalizationmethod[18]. With this comesthe needof analternate
meansofdecomposingamatrix into its eigenvaluesandeigenvectors--withthepriority
of keepingthe condition of its eigenvectormatrix abovea predeterminedlevel for
computationalreliability. Suchan algorithmis sketchedin AppendicesA andB.

1.3 Summary of Contributions

The basic contribution is a robust algorithm for computing the integrals

/0 /0t/0X(t) = eASBe Cs ds, A/I(t) = eA(v-S)BeCVDe Es dsdv,

which are at the heart of the gradient calculations for several types of cost functions. There

are two main developments: first, the ability to express each integral as a matrix exponential,

allowing well-known techniques for computing a matrix exponential to come into play;

second, the rearrangement of the matrix exponential computations into a faster, less memory

intensive, and more robust form specific for each integral.

Although the robust algorithm guarantees an answer for a wider range of input matrices,

it uses more memory and is slower. The mode degeneracy is already parameterized in the

condition of the eigenvector matrix. In running a wide variety of test cases, a limit on

where this condition affects the optimization was determined. Using this limit, a means of

switching between the original calculation and the robust one is made to promote optimum

speed.

Another contribution is in implementing an approximate minimax cost function: unlike
H2-optimal control, this formulation minimizes a worst-case response to initial conditions.

The actual worst case is approximated, and result of this approximation is in a form similar

to that already used in H2-norm.

Application of numerical optimization to CLTR completes a new development in CLTR

design and analysis. A high-order and realistic design problem for the control of a UH-60

rotorcraft poses a challenging limit on the number of optimization trials one may pursue due



to the CPUrequirements.It is shownthat, whenproperly setup, CLTRusingnumerical
optimizationwouldallow designersto obtain satisfactorydesignresultsquickly andin a
routinemannerfor output-feedbackcontrollersstarting from a satisfactorystate-feedback
design.While the requiredcontrollerorder maybehigher in the CLTRdesignapproach
than in a pure direct optimizationof a H2-norm objective using an arbitrarily selected

low-order controller structure, the need to re-design for robustness or other requirements

is reduced.



Chapter 2

Control Design Using Numerical

Optimization

2.1 Introduction

Direct parameter optimization provides a versatile method for linear multivariable con-

tro] and has a broad range of applications. The design optimization is usually formulated

within the context of H 2 optimal control. For completeness, a general formulation of the

control design problem is given in this chapter. Different design cost functions are defined

corresponding to a class of deterministic and stochastic control problems. Equivalent rela-

tions between each design setup are established. Solutions of these design prob]ems are a

strong function of the disturbance input characteristics or plant initial conditions. These

influences become particularly significant in the control synthesis of low-order controllers

using direct parameter optimization. Such a design issue was addressed in [19] concerning

the potential design sensitivity to plant initial conditions in optimal control synthesis. A

worst-case design approach based on the largest singular value of a weighted covariance

matrix was henceforth proposed by Bryson [19] to desensitize the optimal design. A sim-

pler approach based on an upper bound to the worst-case cost is developed in this chapter

and provides a convenient and numerically efficient way to address the worst-case design

problem. A simple helicopter control design is used to illustrate the differences between

a standard LQG design, an H2-optimal control using parameter optimization, and those

obtained using different design techniques for worst_ase initial conditions.

2.2 Synthesis Model Description

The following problem formulation is suited for the control synthesis of a robust low-order

controller in linear time-invariant systems. The system P_(s) is to be controlled by a

constant-gain controller C(s) as depicted in Figure 2.1 where z_(s) is the controlled output

vector, y_(s) the measurement output vector, w_(s) the disturbance input vector and u _(s)

the control input vector. For a consistent notation, the superscript i is used throughout to

denote the system model at the i th plant condition. Although there may be a set of plant

models corresponding to a series of design conditions, there is only one controller, C(s), in

the design optimization. Hence, this single controller will provide stability and performance

over all the defined plant conditions. The controller is modelled as a linear time-invariant

system of a given pre-specified order. Its formulation can accomodate both a feedforward
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ui(s)
pi(s)

(i=l,Np)

z (s)

i 8ys()

Figure 2.1: Closed-Loop System with a Feedback/Feedforward Controller

and a feedback controller structure. As stated before, plant parameter design robustness

requirements in the context of our problem formulation are defined under the conditions

that the control system C(s) stabilizes the class of plants P_(s), 1 < i < Np.

State equations describing the system model Pi(s) at the i th plant condition (Figure 2.1)

are given in equations (2.1)-(2.3) below.

• State Equations:

{ 2i(t) = F_xi(t) + G_ui(t) + Fiwi(t) (2.1)x (0) =0

where xi(t) is a nxl plant state vector, ui(t) an rex1 control vector, w_(t) an m_xl disturbance-

input vector, F _ an nxn state matrix, G _ an nxm control distribution matrix and F i an nxm _

input-disturbance distribution matrix.

Notice that, in the above description, we assume that all the system states are initially

acquiescent. This assumption is made without loss of generality since one can always

establish impulsive inputs w i (t) together with an appropriate influence matrix F _ to generate

any given state initial conditions.

• Measurement Equations:

it D_u_(t) n_w'(t) (2.2)Ys( ) = Hix_(t) + +

i twhere ys( ) is a pxl measurement vector,H i a pxn state-to-measurement distribution matrix,

D_u a pxm control-to-measurement distribution matrix and D_w a pxm _ input-disturbance-
to-measurement distribution matrix.

• Criterion Equations:

z_(t) = H_xi(t) + D2u'(t ) + D_w'(t) (2.3)

where zi(t) is a p_xl criterion vector, H i a p_xn state-to-criterion distribution matrix, D_ a

p_xm control-to-criterion distribution matrix and D_ a ldxm p input-disturbance-to-criterion
distribution matrix.

6



For generality,the disturbanceswi(t) are modeled as outputs of a linear time-invariant

system excited by either impulse inputs or white noise signals. In this manner, one can

shape the disturbance signals to have any deterministic response (e.g. filtered step functions,

sinusoidal functions, exponentially decayed or growing sinusoidal functions, etc...) or, to

model stochastic inputs with any given power spectral density functions. At the i th plant

condition, the disturbance model is given by equations (2.4)-(2.5) below.

• Disturbance State Equations:

{ _(t) _= g x (t) + (2.4)
x (0) =0

where x_(t) is a n'×l disturbance state vector, _(t) a m'×l vector of either impulses (i.e.,

_?i(t) = _?'oS(t) with E[_] = 0 and E[_io_?ioT] = Wj), or white-noise processes r/(t) with zero

mean and covariance E[_io(t)_ioT(r)] = WioS(t- r). The covariance matrix Wo_ is an m'xm'

diagonal positive semi-definite matrix, F_ an n'xn' state matrix of the disturbance model

and F_ an n'xm' input-distribution matrix.

• Disturbance Output Equations:

wi(t) i i D_?_(t) (2.5)= Hwxw(t ) +

where w_(t) is a m'xl disturbance output vector, H i an m'×n' disturbance output matrix

and D_ an m'xm' direct feedthrough distribution matrix.

State model of the controller C(s) (Figure 2.1) is that of a linear time-invariant system

described by equations (2.6)-(2.7) below.

• Controller State Equations:

Xc(t) = Acxc(t) + Bcy_(t) (2.6)
zc(0) 0

where xc(t) is a rxl controller state vector, A_ a rxr state matrix of the controller and Bc

a rxp measurement-input distribution matrix.

• Control Equations:

ui(t) = Ccx_(t) + D_y_(t) (2.7)

where ui(t) is an mxl feedback control vector, Cc an mxr control-output distribution matrix

and Dc an mxp direct feedthrough matrix.

For control-law synthesis, any elements of the controller state matrices can be chosen as

design parameters while the remaining elements can be left fixed at pre-assigned values. In

addition, if needed, linear and nonlinear equality or inequality constraints can be established

among the selected design parameters in order to ensure additional design structure. For

convenience in the derivation of the performance index and its gradients with respect to the

controller design parameters, we define a matrix Co that assembles all the controller state

matrices (Ac, B_, C_, Dc) into one compact form as follows,

Co = Bc A_ (_+_)×(p+_)

Thus, the single matrix Co will completely define the controller state model. Obviously,

for the case of a static output-feedback design (i.e., the controller order r = 0), we simply

have Co = D_. In the following sections, we will develop a control design problem based on

the minimization of a performance objective using the controller C(s) defined in equations

(2.6)-(2.7).

7



2.3 Formulation of the Closed-Loop System

In the general case, the problem formulation assumes that there is no implicit-loop paths

within the feedback control system. Namely, the control input ui(t) or the measurement
i toutput Ys( ) must not have any direct link to itself. This translates into the conditions that

ione of the products DcD_,u or DsuDc must be zero. These conditions are not restrictive

since, in practice, the presence of either actuation or sensor dynamics would automatically

result in a system that satisfies the above assumptions. Moreover, for well-posed systems

one can always reformulate the problem into an equivalent problem involving a modified
-i tset of measurement outputs Ys( )(= Yi(t) - Di,_,u(t)) • Thus,

Yi(t) = H_xi(t) + DLw'(t) (2.9)

Note that the re-defined measurement outputs 9_ (t) do not have a term involving the control

variable u_(t) (i.e., D_ = 0). However, for the discussions that follow, we make use of the

results in [18] where we assume that either Ds_,Dc = 0 or DcD_ = O.

2.3.1 Case D_Di_, = 0

Combining the states of the plant, controller, and disturbances into an augmented system

with the following states

I z_(t)
x"(t) = x_(t)

x_(t)

Dynamics for the overall closed-loop system are

_c'_(t)= F'_z'_(t)+ r%_(t),

where

F ti __

i i i i i

F _ + G DcH_ GiCc (F / + G D_D_)H_
i i i i i

B_(I + D,,_Dc)H_ A_ + BcD_,,Cc B_(I + D,,_D_)Ds,_H_

o o

(2.10)

(2.11)

(n+r +nQ×(n+r +n l)

(2.12)

I i i i ]

(F / + G DcD_)D w

F 'i Bc(I + _ i i= DsuD)DswDw (2.13)
r_

(nWr+nQXm I

[ i , i i , ,]Hisi = (I + DsuDc)H s Ds_Cc (I + DsuDc)OswH_o (2.14)
px(nq-r-knQ

i i i

D_ = [(I + Ds_Dc)DswD_]p×m, (2.15)

H__ = + D_D_H_ D_Cc (D_D_D_ + DE)H_, (2.16)
pS x (n+r +n')

and

i (2.17)

With the above definitions, equations (2.2), (2.3), and (2.7) for y_(t), zi(t) and ui(t) become

i tYs( ) = H_six"(t) + Otsirl'(t) (2.18)
i i i i iz_(t) = n'_x'_(t) + (D_D_D_ + D_o)D,oo(t) (2.19)

i i i
ui(t) = C'iz'i(t) + DcDswDvar I (t) (2.20)

8



i2.3.2 Case DsuD c = 0

The closedqoop system for the combined plant, controller, and disturbance dynamics is
again defined by

x'i(t) = F'ix'i(t) + r%?i(t), (2.21)

where the system matrix F 'i and the distribution matrix F i are now given by

[ i i DcD_)Cc (Fi+GDcDs_)H_o]

F i+GDcH_ Gi(I+ i i
i

F 'i BcH_s Ac + BcDsuCc _ i= BcDswH _ (2.22)

o o

(ri i i+ G Dc Dsw) D w
F_i i i= BcDswDw (2.23)

Equations (2.18), (2.19), and (2.20) for the sensor, control, and criterion outputs are defined

as before, where the matrices H_ i, D_i, Hff, and C 'i take on the following form

i i= (2.25)

and

Hff = [Hc + DcuDcHs Dcu(I + DcDsu)G (Dc_DcDs_ + Dc_)H_], (2.26)

i i
C 'i= [DcHis (I + DcDi)Cc DcDswH_]. (2.27)

2.4 Design Cost Functions for H 2 Optimal Control

To examine the entire class of H2-optimal control problems and to handle the problem

of sensitivity to plant modeling uncertainties, we define the objective function given in

equations (2.28) and (2.32). This formulation turns out to be versatile and well-posed for

the setting of a nonlinear constrained optimization problem. However, depending on the

types of disturbance model, that is whether the disturbance outputs wi(t) are responses

to impulse or white-noise inputs, different definitions of the objective function are needed.

Another cost function is defined in equation (2.38) to address a worst_case control design
problem.

For these cost functions to be well-defined (bounded), one needs to identify the presence

of direct feedthrough terms from the disturbance inputs r/i(t) to the criterion outputs zi(t).

Specifically, for either impulsive inputs or white-noise disturbances, the objective functions
defined in equations (2.28), (2.32), and (2.38) would become unbounded when the direct

feedthrough term D_ is nonzero. When a direct feedthrough term exists (e.g., in command-

following synthesis), the disturbance inputs must be implemented as band-limited signals

(i.e., they are generated from outputs of some roll-off shaping filters). Basically, this reduces
the direct term D/c_ to zero and places the direct influence of the disturbances within the

criterion output distribution matrix H'/c in equation (2.16).

A similar problem would occur for the case where there is a direct feedthrough term
between the disturbances w(t) and the measurements y,(t). The condition for a bounded

performance objective requires that the products i i _ i i iQ (D_uD_D_,_ + D_) and R D_Dsw be

9



zerofor the casesof eitherimpulsiveor white-noisedisturbances.Again,suchconditions
will alwayshold for band-limitedsensornoises.

Thesecostfunctionsaregivenusingthe terminologydefinedin theprevioussectionfor
the closed-loopsystems.

2.4.1 Random Impulsive Disturbances

Considerthe followingcostfunction

i Np _otfJl(tf, Co) = _ _ Wip e2_'tE[ziT(t)Q_zi(t) + uiT(t)Riui(t)]dt (2.28)
i=l

The expectation operator El-] is over the ensemble of the random variables 77i in the pa-

rameterized impulse inputs 7_(t) = 7_o5(t). Control design problems formulated with the

above performance index J(tl, Co) are often classified under the category of deterministic

control. Under this category are, for example, the familiar control problems of command

tracking control, disturbance rejection of unwanted but known external input signals, im-

plicit and explicit model-following designs, H2-control to initial conditions and H_-control

to sinusoidal inputs.

This form for the cost function can be further expanded by embedding the closed-loop

system responses
x'i(t) = e(F'i+a'l)tF'i7i o (2.29)

directly into the cost function Jl(t I, Co) as

J1 (t f, Co)

(2.30)

where

S_(tf , Co) = fot'

[iiT]and W_ = E 7o7o •

e(F"+aiI)Tt [H ctiTQH c +_,i c,iTR_C,i]e(F,,+aq)Ttdt (2.31)

2.4.2 Random White-Noise Disturbances

The objective function defined in equation (2.28) is no longer valid since it is unbounded

due to the presence of disturbances with white-noise spectra. For this reason, it is not

proper to mix, in a given single plant condition, design considerations of initial conditions

10



and of disturbancerejectionto white-noisedisturbanceswith thesameobjectivefunction.
Alternateobjectivefunctionsfor the disturbancerejectionproblemmustbedefined(Refer
to AppendixA of Ref. [18]).Therearebasicallytwo waysto definea quadraticobjective
functionfor white-noisedisturbances.The first formulationinvolvesthe statecovariance
responsesevaluatedat the terminal time t:. Namely,

1NP

J2 (tl, Co) = _ _ WpE_,[zi iT (tl)Qi zi (t]) + uiT(tf)Riui(t/)].
i=l

The second formulation is a time-average of the state covariance responses,

= WpE a, ziT(t)Qizi(t) + uiT(t)Riui(t) dt .J3(t:,co) _ _ ,
i----1

(2.32)

(2.33)

The expectation operator E_, [-] is over the ensemble of the random processes defined in the

input variables rli(t) for a closed-loop system destabilized by a factor ai. The destabilization

effectively adds a value (_i to the diagonal elements of the closed-loop system matrix. Given

one of the above performance indices, one can address the entire class of H2-norm based

control design problems. For example, we can solve for the linear quadratic regulator

design (LQR), the linear quadratic gaussian (LQG) design, loop transfer recovery (LTR),

closed-loop transfer recovery (CLTR), or model reduction based on the minimization of the
H2-norm of the error.

These two cost functions can be shown to be related to each other and also to the cost

Jl(tl, Co) defined in Section 2.4.1. Embedding the closed-loop state responses,

into J2 (tl, Co), we have

x'i(t) = fo t: e(F"+a'O(t-r)r'iTli(r) dr, (2.34)

&(t:, Co) 1NP { _0_0---- _ _= Wp tri (HCtiTQ Hc +iti criT Ricti) t� tt e(F'i+a(l)(t/-r)Fli

u [,:(,-),:(,)] r "_e(F''+°'':(',-'_d,-_s} (2.35)

= Wio6(r - s), equation (2.35) becomesWith E [Ili(T),iT(s)]

&(t:, D_)
1NP

- Q.: +

_o"e(F'%_il)('l-r)F'iW:F'iTe(F'i+ail)r(tl-r)dr}

=12 _.= Wip tr {(HJciTQiHff +c'iTRic'i) foil e(F'i+aiI)tFtiWi°FtiTe(F'i+ail)Ttdt}

fJo" :-,,,o,-,,+ }= _ .= We tr r ''r e(F'+_'':' _ _ ._ _ C'iTRic'') e(F''+'_''_)'dtr''w'o

11



Or simplifying,

The above objective function is identical to the cost function Jl(tf, Dc) in equation (2.30).

As before, the objective function J3(tf, Co) can be simplified using the closed-loop re-

sponses given in equation (2.34) as follows,

1 Np H 1iT iH_i cIiTRicli)
Ja(tf, Co)=_EW; tr{( c Q c + (I)(tl)} (2.37)

i----1

where

Again, with E [W(T)wT(s)] = WoS(T -- S),

J3(tj, co)
1 Np

__ ,iT i ,i cliTRiCli_
2tiEWp tr{(.: QHc + /

i=l

j_ot f rt i - }
e (F "+a_I)(t-r)F_WiFtiTe(F'i+a_I)'r(t-r) drdt

Jo °

= Wptr e (F'+_'ST(t-¢) (H'c Q .'_ +

e( F" +_' l)(t-r) dTdtFliW_ }

1
--frotl Y2(t, Co) dt < J2(tf , Co)

tf

since the objective function J2(t, Co) is a monotonic increasing function of time t. Hence,

Ja(tf, Co) <_ J2(t I, Co) for any finite terminal time tf, and they become equal in the steady-

state case where t f --_ oc.

We have shown that a design objective for random white-noise disturbances as given in

the cost functional J2(tl, Co) or J3(tf, Co) is equivalent to one involving initial conditions
or impulsive disturbances.

2.4.3 Worst-Case Impulsive Disturbances

A worst-case design objective to impulsive disturbances, i.e.

follows,

£'1 N, [ziT(t)Q z (t) + uiT(t)Riui(t)]dt
Ja(tf,Co) = _ __Wp max .,T.¢

i= 1 rt_ ",o "1o

Substituting the closed-loop system responses given in equation (2.29), we have

qi(t) = _lioS(t) is defined as

(2.a8)

1
J_(tj, Co) =

Np iT tiT i Pi i

V" maxq° F S F rjow; (tf,Co)A.., _iTni
i----1 rl_ "1o '1o
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The control problemfor worst-caseimpulsivedisturbancesis to minimizethe maximum
eigenvalueof FliTsi(ti, Co)F li, or equivalently its maximum singular value since the matrix

FtiTsi(tf, Co)F 'i is symmetric and positive semi-definite. It is well-known that when singu-

lax values of a matrix are repeated, they are not differentiable with respect to elements of

the matrix ([23], p.288). With the relation _2(A) < tr{ATA} for any arbitrary matrix A,

we can re-define the worst-case functional by its upper bound,

Np

z,*;
i=l

{()}= }2 w; tr s'(tl, Co)r"r''T 2
i=l

where Si(tl, Co) is defined in equation (2.31). Derivatives of this upper bound are easy to

compute. Thus, we prefer this approximation based on the Probenius norm to the exact

worst_case design objective. While it usually best to scale the disturbances through the F '_

matrix, in practice, it is often convenient to allow an additional weighting matrix Wo in the

matrix F'T 'it as F'iWio F'iT. Equation (2.39) becomes

J_(tl,Co) _w; tr s_(tj, Co)r,_w,or,_r 2= (2.39)
i----1

This corresponds to a bound on the maximum singular value problem

Np _iT ,xri ½ 1,iT i ,i i'_ i,io vvo r S (tf, Co)r W'o _o1
Je(ty, Co) = -_ _ W; max _iT_i

i= I 77_ "*o ",o

The problem formulation for worst_case disturbances can also be extended to address

cases where the disturbances have a given deterministic time behaviour. In this situation,

the control problem is then to find an output-feedback controller for these specific types of

disturbances (e.g., steps, ramps, sinusoidal inputs of known frequencies, and others).

2.4.4 Worst-Case for White-Noise Disturbances

The usual convention for white-noise disturbances is that the components to the disturbance

vector _(t) are independent, and since E[_i(T)_TiT(s)] = Wio_(T -- S), this implies that W_

is full rank. However, for the worst-case design we optimize over Wo_ that are rank 1, thus

Wg = _?_?_T corresponds to a disturbance of the form r/_(t) = _iopi(t), where p_(t) is a scalar

white noise source of unit spectral density. Within this context we can write the two forms

of the worst_case cost functional for white noise (analogous to the two forms of the H 2 cost

for white noise). The first is related to the state covariance response evaluated at the time

ty

1 Np E_,[pT(tf)Q_z_(tf) + u_T(tf)R_ui(tf)]

g_c(ti, Co ) = _ _:,_--_W_max.w$' tr {Wo_} (2.40)

The second is an average of the worst_ase state covariance response in the time interval

[0, ill

J_rt Co) = 1 Np E_, f_I[z_T(t)Q_z'(t) + u_T(t)R_u_(t)]dt3 _ f, h-Y--,_--_W_ max (2.41)
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By embeddingthe dynamics,both costfunctionalscanbe written in the form

1
g (ts, Co) =

tr {r' Ts (tl, Co)r"W'o}
EW_ max
_=_ w_o tr {W_}

The cost driven by such a noise corresponds to the maximl_n singular value of F'iTsi(ts, Co)F n

and would be an upper bound to the regular H 2 cost defined for white noise.

As before, we use the Frobenius norm of FliTs i (tS, Co)F li to bound its maximum singular

value. The result is the same as given in equation (2.39).

Control-law synthesis using the above worst_ase objectives and properties of their corre-

sponding solutions are not well understood and need further investigation. This is a subject

left for future research. However, it seems to have a potential of providing controller de-

signs that are insensitive to plant disturbances in applications such as model reduction and

closed-loop transfer recovery.

2.4.5 Design Features of Direct Optimization

Note that the performance indices given in equations (2.28), (2.32), and (2.38) are evaluated

to a finite-time horizon ty. The use of a finite time plays a significant role in the imple-

mentation of a reliable design algorithm for the optimum steady-state solution. It should

be recognized that the objective function is well-defined regardless of whether the feedback

control-law is stabilizing or not. Furthermore, a class of problems associated with command

tracking of neutrally stable or unstable target responses (e.g. step and ramp commands,

sinusoidal trajectories) is only tractable under the setting of a finite-time objective func-

tion, but not in the confine of a steady-state objective function where tS ---, oo. In practice,

whenever possible, steady-state results are usually achieved when the terminal time t S is

equal to five or six times the slowest time constant in the closed-loop system responses.

Besides the concept of design based on a finite terminal time tf, other unique and

important features have also been incorporated into the design objective function of equa-

tions (2.28), (2.32), and (2.38). First of all, this objective function is not the usual quadratic

cost function traditionally defined in linear optimal control. It is instead a weighted average

of quadratic performance indices evaluated over a set of design conditions (1 < i _< Np).

Different weights are assigned to each plant condition through the scalar variable W_ where

W_ > 0. Of course, design for only one plant condition (with Np = 1) reduces to the usual
quadratic cost function evaluated at the nominal design condition. The time-weighted fac-

tor e2a_t allows us to impose directly a stability constraint on the closed-loop eigenvalues in

the H2-optimal control problems. Namely, when a steady-state design has been achieved

and the optimum objective function is bounded, then the closed-loop system eigenvalues for

the controllable modes will have real parts less than -a _. Finally, the weighting matrices Q_

and R _ are symmetric and positive semi-definite matrices. Note that our solution approach

to the minimization of the objective function J(ty, Co) is based on nonlinear optimization;
hence, it does not require the control weighting matrix R i to be positive definite. In fact,

in some design problems such as command tracking and model reduction, a proper objec-

tive function contains only penalties on the tracking or model-matching errors and does

not include penalties on the control variables (i.e., with R _ = 0). The above observation

further indicates the applicability of the design procedure in addressing the significant class

of solvable singular optimal control problems [33].
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2.5 Derivation of Cost Function Gradients

In this section, explicit gradient expressions for the cost functions defined in Section 2.4 with

respect to the controller matrix Co are derived. Results are given for both cases DcDsu = 0

and Ds,,Dc = 0. To begin, we consider the following useful differentiation rules of the trace

function,

0 0 { }o--d2tr{Qcore} = (TeQ)r and b-CTot,• QCorre : reQ

In addition, differentiation of the exponential function with respect to its argument can be

obtained as follows. For a linear time-invariant system,

¢(t) = A¢(t)

¢(0) = S

Then,

oib o¢ OA
ifCo(t) = A-_o(t ) + _-C--_o¢(t )

Solving for 0¢/0Co, we obtain

0¢ t OA
O-do(t) = foo¢(t- _)g07o¢(°) d_

With the following definitions (as suggested in [18]),

F i 0 i i]

rHb
F/= 0 0 0

o o F_,
(n+r +n') x(n +r +n')

(2.42)

c,o]0 I

0 0
(n--kr +n') x (rn+r)

["]
F D w

(n-t-rTn I) X m'

D_H_, ]
H,o= H'_ O ' '

0 I 0 (p+r) x(n+r+n')

• i i< = [< o _,_<],,×(_+_+o,>

_,'o= [ °a< ]
0 O_t-r)xm'

0 0 (p+_)x(m+,)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)
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T1 = [I

0 0

T2= 0 I
0 0

[ooT3= 0 I

O],_x(m+,) (2.50)

(nTr--bn') X (re+r)

o]
0 (p+r') × (n+r+n')

(2.51)

(2.52)

Gradients of the respective cost functions can then be expressed in a convenient form.

2.5.1

Define

then

where

Gradients of Jl(t:, Co) (Case Ds_Dc = O)

T " D ix_ ,,iF'_ = Fio+(Gio+ 2_o ,)_Ono
i iF 'i = Fio + (Gio + T2CoD1)CoD o

• i i
Htci = H_ + D2CoH o

c" = T,Como

OJ1

-50-0(t:, Co)

Np

[ FliT['l" 'i .._ TW RC'i)Xi(t/, Co)HioW
i=1

T iT i+(a'o + 2CoDO [M (t:,Co)Y_: + S_(t:, Co)r'_W;Do'iT]
• /i i iT+TT[Mi(tI, Co)HioT + s'(t:,Co)I" WoN o ](D_Co) T

(2.53)

(2.54)
(2.55)
(2.56)

(2.57)

Xi(tf , Co) = fo t: e (F'+a'I)t F'iW_I'tiTe(F'%c'iI)Tt dt (2.58)

Si(ty, Co) = fo t/e (g''+aq)Tt (H'__2WQH..Ici + c'iTRc'i)e (F'+a'I)t dt (2.59)

./_i(tf, Co) = f tilt _(F,i+_q)T(t_a)f_rtiT_.t i tiT ,i (F'i+aiI)t ti i liT
Jo Jo _ _,,_ _zn_ +C RC )e r WoF

e(F'_+aiI)xz da clt (2.60)

2.5.2

Define

then

Gradients of Jl(t/,Co) (Case DcDs_, = O)

_ D _F'i = Fio + CoCo(H; + lCoTa) (2.61)
i i

Fti = F_o + GoCoDo (2.62)

• i _ D iHJc_ = HI + D2Co(Ho + ,COT3) (2.63)

C 'i = T1Co(Hio + D_CoT3) (2.64)

Np D iT ,_OJl:t ,Co) _--_W_[( 2 QH_ +TTRCn)X'(t/,Co)(Hio+ D_CoT3)T
°_ f :i=1

iT i i D_CoT3IT i iT i GioTS(t$,Co)rtiWoDioT+ Go M (t:,Oo)[Ho + + (aoCoD1) M (t:,Co)T w +

(2.65)
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2.5.3 Gradients of J,(tf, Co)

The upper bound Jo based on the Probenius norm is a continuous and differentiable function

of the controller design parameters. Computational effort in the gradients of J,(tf, Co) is

essentially the same as that for the cost function Jl(tf, Co). Recall from equation (2.39)
that

Je(ty, Co)= _Wp tr s_(tI, Co)r'w'ov 'T (2.66)
i=1

Next, we derive the gradients of Je(t I, Co) for the eases DsuDc = 0 and DcDsu = O.

2.5.4 Case Ds_,Dc = 0

Using the definitions of Fti, F'i, H_ic, and C 'i given in equations (2.53)-(2.56), we have

oJ_(ts, co) N. i iT i ti
X_vs(tI, Co)Ho

OCo i=1

+(G_o T D i T _ iT TTA4_ws(tI, _ iT+ 2Co 1)Mws(t1,Co)go + Co)(D1CoUo)
+(G_o + T2CoD_) Ts(tl)r'w'or _rsi(tj, Co)r'iWoD_or

+Tf s_(tl, co)riw'or ir si(tl, Co)r"Wo(D_CoD_o)T (2.67)

where

X_s(tl, co) =

M_s(tl, co) =

tt e(F"+c_'I)tFiWiFiT Si(t - Co)F_W_oFiTe (F"+a_l)Tt dt (2.68)0 k J,

fo ' , ' ,i_ i ,, c 'ir_'c') e(_''+_'I)'"fo (H; QH';+
FiWioFiT_(tl, Co)FiWioFiTe (F'+cdI)T_r dadt (2.69)

2.5.5

Using the definitions

o&(t_, Co)

Case D_Ds_, = 0

of F _i, F 'i, H'ic, and C ti given in equations (2.61)-(2.64), we have

Np

i DiT _ ,i T i R C } X_,s(tf, Co)(Hio +EWp { 2 QHe + T , ,i i OiCora)T
OCo _=i

iT , ,i TTR, C,,} X_s(tf, Co)T xTul±IDiT_T"_'o{D2 Q Hc 'I-

iT _ _ D_CoT3] T + (GoCoDl) A4ws(t I, Co)T[+G ° .A4ws(tf, Co)[Ho + i i T i

+CoifS'(tj, Co)r,w_orir_(tl, Co)[r_o+ , , ,rGoCoDo]WoD o (2.70)

2.6 Special Design Problems

For further study, we simplify the problem described in the previous section to a single

nominal plant condition (i.e., Np = 1). The plant state model is given by equations (2.1)-
(2.3) and has the following simplified form

2(t) = Fx(t) + Cu(t)

z(O) = xo
y_(t) = H_x(t)

z(t) = Hcx(t)

(Plant dynamics)

(Initial conditions)

(Measurement variables)

(Criterion variables)
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whereweomit the superscripti (i.e., i = 1) for clarity. Note that simplification has been

made to the measurement and criterion equations where direct influence from the control

and disturbance inputs has been omitted (i.e, Ds_ = D_ = D_, = D_ = 0). For a

deterministic control problem related to plant initial conditions, the disturbance inputs

w(t) are not considered in the controller synthesis. Furthermore, it is assumed that the pair

i F, G) is controllable, (F, Hs) is observable, and (F, He) is detectable.

In the conventional LQR problem, one seeks a control-law u(t) that minimizes the

following cost functional

1 f,, r
uT(t)Ru(t)] dt (2.71)J(t/,u(t)) = 2 Jo LzT(t)Qz(t) +

where the weighting matrices Q and R are both symmetric and positive definite. Solution to

this dynamic optimization problem would normally proceed by adjoining the state dynamics

2(t) = Fx(t) + Gu(t) as constraints to the cost functional J(tl) using a set of Lag-range

multipliers )_(t). From the stationary condition 5J(x, u, )_,t/) = 0, we obtain the familiar

Hamilton-Jacobi equations for a two-point boundary value problem. The resulting optimal

control-law is given by u(t) = -R-_GTA(t). By defining )_(t) = S(t)x(t), and letting

t: ---*oc for the steady-state problem, one obtains a stabilizing static state-feedback control-
law u(t) = Dcx(t), where the gain matrix Dc is given by D_ = -R-1GTs_, and where S_

satisfies the algebraic Riccati equation

FTsss + SssF - SssGR-1GTSss + HTQHc = 0. (2.72)

We now examine an alternative development to the above LQR problem in the per-

spective of direct optimization using a fixed controller design structure. The problem is

formulated as detailed in Section 2.4 and simplified to the case of a static output-feedback

design (i.e., with Co = Dc or u(t) = Dcy_(t)). Clearly, the state-feedback case of LQR

design is simply a special case where y_(t) = Ix(t), i.e.,//8 = I. Closed-loop system state
responses to initial conditions under a static output-feedback law are given by

x(t) = c(F+GDcH*)tXo = eF'txo (2.73)

The cost function J(t/, u(t)) in equation (2.71) can be rewritten as

J(tf, Dc) = 1E [xTS(tf, Dc)xo]2

with Sit/, Dc) is given in equation (2.31), and the initial condition vector xo can be treated

as a set of random variables with zero mean E[xo] = 0 and covariance E[xoxTo] = Wo >_ O.

The control design problem reduces then to the minimization of J(t:, De) with respect

to the static output-feedback gain matrix D_. That is,

OJ(t I, Dc) 1 0
-- tr {S(tf, D_)Wo} (2.75)

OD_ 20D_

Using Kleinman's lemma [32] and after some manipulation, we obtain

OJ(t:, De) _ GT ft/ S(ty - a, Dc)e(F"+a'l)aWoe (F''+_'l)Tu dart T
ODc Jo

ft: e(F,,+_1)_Woe(F,%_1)r_ dT H T+RDcH_ (2.76)
Jo
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Onecould alsoobtain the aboveresult using the generalgradientexpressionsgivenin
equations(2.57)or (2.65)whenwe specializeto the caseof a singleplant conditionand
Co = De.

Solution to the necessary condition for optimality

OJ(t:,Dc)
--0 (2.77)

ODc

for the optimal gain matrix De is difficult when the terminal time t: is finite. However, for

a stable closed-loop system matrix F' and as t: is increased to beyond five or six times the

time constant of the slowest closed-loop modes, then

j_otf S(tf - a, Dc)eF'CrWoeF'Ta da ---_S(ti, Dc) { _oot/ eF'aWoe F'T_ da} (2.78)

Under this steady-state condition, we can re-assemble equation (2.76) as

the term (HTDTR + S(t:,Dc)G) is in the nullor, space of the matrix

Ys foot/e(F'_-t_il)ZWo e(F'i +a_I)Ta da

For the special case where Hs = I (i.e., the state-feedback case) and Wo > 0, we obtain the
familiar result of

Dc _- -R-1GT S(t$, De) (2.80)

To show the correspondence between the matrix S(t:, D¢) and the Riccati equation in the

state-feedback case, we substitute equation (2.80) into equation (2.31) to obtain

S(t:,Dc) _- fo':e (F-c" 'cTs(t: 'D¢))T' (HTQHc + S(tj,,Dc)GR-'GTS(t/,Dc))

e (F-OR- 1GTs(tf'Oc))t dt (2.81)

Multiplying the above equation by (F T - S(t/, Dc)GR-1G T) on the left and adding it to

the same equation multiplied by (F - GR-]GTS(tI, Dc)) on the right, we obtain

IF T- _(tf, nc)_R-1G T] _(tf, Uc) + S(tf, nc) [S-_R-l_Ts(tf, nc)] -_

_(S-(_. I_T s(tf,Dc))Tt [H:QHc + S(tf , nc)a_-lG y s(tf , Dc) )]. (F-GR-1GT "(t,f,Dc))$] t:

(2.82)
or

FT s(ty, Dc) + S(ty, Dc)F - S(tl, Dc)GR-1GT s(tl, Dc) + HTQHc =

e(F-On-ldrs(t:,O¢)) Tt] [HTQHc + S(t/,Dc)GR-IGTS(t/,Dc)] e(F-CR-lcTs(t/,Dc))t/

(2.83)
The above equation reduces to the algebraic Riccati equation under a stabilizing state

feedback design when t: --* oo,

FT sss -[- SssF -- SssGR-1GT Sss -[- HTQHc =- 0, (2.84)
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where
Sss = lim S(tf,Dc). (2.85)

t l --_ oo

Output feedback designs formulated in this manner yield the minimum cost functional

value over an expected distribution of initial conditions. Often, as in the conventional

state-feedback design, this expected distribution is assumed independent and uniform (i.e.,
E[xo:o] = I).

In the static output-feedback design case (where Hs _ I), analytical closed-form solu-

tions cannot be found in general for the design problem stated in equation (2.28). One must

resort to numerical techniques for the solution of the optimal design gain matrix De. Note

that, in the above formulation, solution uniqueness as well as the optimal solution itself will

depend on the selection of the initial condition covariance matrix Wo. Recently, Chen, et

al. [33] have provided precise conditions under which an optimal static state-feedback design

is unique. Non-uniqueness of an optimal state-feedback design can be used to explore other

design issues such as robustness ([37]-[38]).

One can also apply this special design case to the approximate worst-case cost. The

stationary conditions given by

o
ODe -ODc

become, for a sufficiently large t/,

where

o (RDcI ,+ :S(t:,

O*(t/) = fo t: e(F'%_I)_FWoFT S(t:, D_)FWoFTe (F'%_I)T_ da

(2.86)

One possible solution is given by the relation DcH_ _-- -R-IBTS(t/, D_). Note that the

above equation is identical to the H 2 form except for the weighting matrix

{ fot/ e(F'_+a_ l)_FWoFT S( tI , Dc)FWopT e (F'_+a_ I)T a d_ } H T.

This is significant in light of the fact that a dynamic output feedback problem can also be

reformulated in terms of static output feedback [2] for linear time-invariant systems, thus

one can show that a similar weighting factor is responsible for the difference in H 2 and

worst-case solutions for the dynamic output feedback case as well. Clearly, this solution

is identical to the solution of the LQR problem when//8 = I. Generally, solutions of the

above stationary condition for the optimal static gain matrix Dc can be only be done using
numerical optimization.

2.7 Design Example Using a Simplified Helicopter Model

A comparison of designs achieved under the LQ, H 2, and worst-case performance index is

done for the case of state feedback. The state feedback result also establishes a baseline for

the output feedback designs.

For output feedback, we compare designs from three different performance objectives:

LQG, H 2, and worst-case. Because the disturbance set-up in the synthesis model is so

2O



important, this comparisonis performedover2 setsof synthesismodels. The first set is
relatedto looptransferrecovery(LTR). Thesecondsetinvolvesintroducingfictitiousnoises
intoeachof thestatesof the plant modelwith differentintensitylevels.This isanattempt
to approachstate-feedbackresultsby improvingthe stability of the closed-loopsystem.

2.7.1 Helicopter Model

Weconsidera 1-dimensionalmodelof the OH6Ahelicopterin hovermode(seeRef. [19])
with alongitudinalcycliccontrol6(t). Thevehiclestatesarepitchrateq(t), pitch angle 0(t),

ground velocity u(t), and position x(t). The system units are feet, seconds, and degrees.
The state model is

e(t)
q(t)

x_

0

1

X a -g 0

Mq 0 0
1 0 0

0 0 0

u(t)
q(t)
O(t)
x(t)

x_
M_

+
0

0

5(t) +

-X_

-M u

0

0

u,,(t). (2.87)

Values of the constants in the model matrices are X_ = -0.0257, Xq = 0.013, M_, = 1.26,

Mq = -1.765, X_ = 0.086, and M_ = -7.4080.

The vehicle is disturbed by a horizontal gust u_(t). It is modeled as a white noise with

a spectral density of 18 ft2/sec and entered in all designs as well as in the calculation the

RMS gust responses.

2.7.2 Full-State Feedback Design

Initially we consider a full state-feedback controller to minimize the following quadratic cost
objective

J(tf, De) = fot' E [x2(t) + 52(t)] dt (2.88)

which penalizes the ground position x(t) and the longitudinal cyclic control 5(t) equally.

The optimum design Dc is found to be Dc = [1.9890, -0.2560, -0.7589, 1.00]. This solution

can be obtained both from the Riccati equation (2.84) and from direct optimization based

on equation (2.76). In the gradient search procedure, the function nelder in MATLAB

was used to minimize the following objective functions: the objective function J(tf, D_) in

equation (2.88), the maximum singular value Ja for the exact worst_ase design defined in

equation (2.38), and the Frobenius norm for the approximate worst_case design in equa-

tion (2.39). In all numerical cases, the terminal time tf is set equal to 512 seconds, which

meets the aforementioned criterion for being steady_state.

Table 2.1: Static State Feedback for the Helicopter Model
Eigenvalues

Open-Loop
-1.8891

0

0.0492 ± 0.4608i

(¢=-0.106)

I Closed-Loop
-1.8461

-1.1192

-0.4464 ± 0.9774i

(_=0.415)

Single-Loop Margins

Loop Phase Gain

x: 60.01 ° 8.61dB

0: 41.4 ° -5.85dB

5: 60.2 ° -ll.3dB

Unit Gust

Responses
x = 0.243

0 = 1.497

5 = 0.976

Design results are shown in Table 2.1. They provide the baseline for comparison with

the output feedback designs that follow. Time responses to a step command in ground

21



position,x_,_d, are shown in Figure 2.2 along with the Bode magnitude plot of the transfer

function X( S) /Xcmd( S).

Design solutions are identical in all three cases and are equal to those obtained from

the Riccati equation for the LQ problem. Note again that the LQ design is equivalent to

the minimization of an objective function evaluated to a uniformly distributed set of initial

conditions on all four rotorcraft states, i.e., with E[xoX T] = I. In the numerical optimiza-

tion, the initial conditions enter into the evaluation of the different types of cost functions

explicitly. In the minimization of tr{S(ty, De)} for LQ and H 2 problems, _(S(tf, De)) in

worst-case, and tr{S2(tf, De)} in the approximate worst case, the maximum singular value

of S(tf, Dc) is found to be 5.58.

2.7.3 Comparison of Output-Feedback Designs

To make a valid comparison, the controller order must be the same for each of the LQG,

H 2, and worst_case designs. Since the LQG design results in a 4th order controller with

no direct feedthrough terms, all other designs based on direct optimization will involve a

4th_)rder controller with Dc set to zero.

The LQG formulation is set as to the form of the disturbance inputs it uses, though

being an observer-based design, it actually marries two different disturbance models. The

state--feedback gains were determined using a unit uniform uncorrelated distribution on the

initial conditions of all the rotorcraft states. The full_)rder observer part of the LQG design
assumes white noise for both process and sensors. The H 2 and worst_ase problems will

also be formulated with white noise. We define the sensor outputs for the rotorcraft as the

rotorcraft position x and pitch angle 0. Sensor noise in the ground position measurement

x(t) has a spectral density of 0.4 ft 2 sec, and for the pitch measurement O(t) a sensor noise

of 0.4 deg 2 sec. The helicopter is excited by a horizontal gust of spectral density 18 ft2/sec.

An initial output-feedback design is performed using only the gust disturbance as pro-

cess noise. Compared to the results in Table 2.1 for state feedback, the RMS responses

to the gust input are higher in all three output-feedback designs (Table 2.2). Robustness

evaluation is conducted at the control actuator input. The resulting gain and phase mar-

gins are low. The maximum singular value of S in the LQG design is somewhat larger

than that for the state feedback design, and those from the H 2 and worst_ase designs

are significantly higher still. The approximate worst_case design does indeed optimize to a

smaller (_(FTSF) than the other designs. This trend is maintained for the different sets of

disturbances. Note that "tuning" of the worst_ase design to gust disturbances leads to a

poor step response characteristic. (Figure 2.4) Responses to command inputs for the LQG

design always matches corresponding responses of the LQ design.

2.7.4 Actuator Disturbance Augmentation

Here we augment the disturbance model to include a process noise entering into the control

actuator by letting F = [F9 _G]. The power spectral density of this process noise is fixed
at 18 deg 2 sec. (Note that the gust disturbance power spectral density is 18 ft2/sec.) The

factor a in the disturbance distribution matrix is used to scale the effects of this additional

process noise relative to the gust disturbance, and has the sequence of values [0,0.1,1,10].

This process simply follows the traditional Loop Transfer Recovery (LTR) procedure in

LQG designs, to enhance the robustness in the actuator loop [39]. Table 2.2 shows the

expected improvement in robustness. Responses to the gust disturbance also improved
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Table 2.2: Traditional Loop Transfer Recovery Using Different Design Methods
LQG Designs

Fictitious Actuator ]1Noise Factor a 0.0

Mean Square x:

Responses 0:

to uw _:

x: P.M. (deg)
G.M. (db)

O: P.M. (deg)
G.M. (db)

5: P.M. (deg)

G.M. (db)

1.255

6.617

1.274

31.66

5.04

23.93

0.1

1.165

6.125
1.254

31.56

5.02

24.93

1.0

0.627

3.034

1.069

30.83

4.90

30.30

15.63,-3.569

10.0

0.431

1.888

0.950

30.51

4.88

10.63,-4.110 10.95,-4.117

29.84 29.90 40.62 52.49

10.66,-7.46 10.97,-7.638 15.62,-9.265 -10.55
28.57 28.81 30.66 31.56

3.882 4.442 53.48 4111

H 2 Numerical Designs
Fictitious

Actuator Noise 0.0 0.1 1.0 10.0

Mean Square x: 1.276 1.182 0.627 0.431
Responses 0: 6.596 6.102 3.034 1.889

to u_ 5: 1.269 1.244 1.069 0.950

x: P.M. (deg) 32.35 33.31 30.83 30.51
G.M. (db) 5.15 5.15 4.91 4.88

0: P.M. (deg) 24.23 24.75 30.30 30.09

G.M. (db) 10.45,-3.268 10.75,-3.296 15.61,-3.569 -3.75

5: P.M. (deg) 27.97 28.46 40.58 52.47--

G.M. (db) 10.49,-7.86 10.78,-7.940 15.60,-9.260 -10.55

_(S): 12138 20527 2263. 725.3

o(p,'rSr,): 3.889 4_447 53.52

Fictitious

Actuator Noise

Mean Square x:
Responses 0:

to u,_ 5:

Worst-Case Numerical Designs

0.0

0.948

6.887

1.398

0.1

0.887
6.209

1.343

1.0

0.529

2.798

1.036

4112

10.0

0.342

1.901

0.965
x: P.M. (deg) 29.24 29.78 30.08 30.72

G.M. (db) 4.03 4.01 4.10 5.31

0: P.M. (deg) 24.75 23.56 29.40 30.36

G.M. (db) 11.46,-2.828 12.03,-2.785 18.86,-2.981 -3.57

_: P.M. (deg) 29.67 27.53 43.37 55.00

G.M. (db) 11.49,-6.18 12.04,-6.514 18.87,-9.495 -10.80

9448. 16894 1840. 122.1

50.404.0723.562 3972
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when we increase the actuator process noise. Although there is no general tendency for

_(S) to converge toward the state-feedback result, this value did decrease somewhat with

increasing (_ in the H 2 and worst-case designs. For different values of a, the LQG and H 2

designs show significantly different results in _(S) and in step responses to X_d.

2.7.5 Fictitious State Noise Augmentation

In this set of designs, we augment the disturbance model with independent fictitious noises

entering into each of the plant states by defining F = [Fg aI]. We set the power spectral

density of each fictitious noise at 18. Again the scaling factor c_ in the disturbance distribu-

tion matrix takes on a sequence of values [0,0.1,1,10]. The ensuing stability augmentation

improves the overall controller performance, with the parameter 6"(S), representative of

the state-feedback performance, trending toward the state-feedback value of 5.58 as a is
increased.

In the LQG design, increasing the process noises in each state will cause the estimated

states of the observer to converge more rapidly. As a result, robustness at the actuator

loop worsens, while the maximum singular value of S approaches that of the state feedback

design (Table 2.3). The single-loop robustness at the sensors improves, and the controller

is less attuned to gust alleviation in the position x (as in the H2-based controller designs).

The step responses and the transfer functions X/X_md are equal to those of state feedback

as expected.

Results based on the numerical optimization of H 2 costs do not correspond to those of

LQG as well as in the previous case, though overall they have similar gust responses and

robustness margins. Increasing the relative emphasis of fictitious disturbances going into

the plant states caused no convergence of H 2 and LQG design properties.

The step responses in the H 2 designs (Figure 2.5) converge nearly to the stat_feedback

response as (_ is increased, though with a slightly slower response and less overshoot. While

_(S) became smaller, did not settle to the state feedback value.

For the worst_ase designs, increasing the fictitious plant state noises slightly improved

the overall disturbance rejection, while the robustness for all loops improved more substan-

tially. Of note is that the robustness at the actuator loop improved. The value of _(S)

tends towards that of the state feedback case, while the step responses (Figure 2.6) also

converge to nearly the state feedback response. However, in spite of increased system sta-

bility, disturbing the initial conditions of the states did not result in as desirable overall

controller characteristics as augmenting with actuator disturbances. More favorable results

may be obtained with larger disturbance amplitudes.

2.8 Conclusions

Direct parameter optimization provides a powerful means to address a wide class of design

criteria and controller structures. The control formulation presented in this chapter shows

several common types that are well-suited for the framework of numerical optimization.

Development of reliable numerical optimization techniques is tied closely to the availability

of reliable computation of the cost functions and its gradients with respect to the controller

design variables. In all cases, evaluation of the cost functions presented in this chapter

and their gradients involves directly the computation of the following integrals of matrix
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Table 2.3: Singular Value Type Disturbance Augmentation
LQG Designs

Fictitious State I[Noise Factor a 0.0 0.1 1.0 10.0

Mean Square x:

Responses 0:
to uw 6:

1.255

6.617

1.274

1.410
6.769

1.215

x: P.M. (deg) 31.66 30.96

G.M. (db) 5.04 4.44

0: P.M. (deg) 23.93 22.76

G.M. (db) 10.63,-4.110 10.91,-2.806

5: P.M. (deg)

G.M. (db)

29.84

10.66,-7.460
28.57

3.882

o(s):
o(r,'rS[',):

16.36

5.647

2.653

9.130
1.072

34.77

5.83

25.60 -

12.83,-3.686

25.30

12.84,-8.516
8.450

126.0

2.674

8.913

1.017

35.76

6.58

- 28.03

15.66,-4.06
25.60

14.41,-8.63
7.553

11140

H 2 Numerical Designs

Fictitious State HNoise Factor a 0.0

Mean Square x:

Responses 0:
to u_ 6:

1.276

6.596

1.269

x: P.M. (deg) 32.35

G.M. (db) 5.15

O: P.M. (deg)

G.M. (db)

5: P.M. (deg)

G.M. (db)

o(s):
_(F'TSF'):

24.23

10.45,-3.268
27.97

10.49,-7.86

12137

3.889

0.1

1.488

7.082
1.187

32.56

4.66

23.64

11.25,-2.839
28.83

11.33,-7.703

1038.

5.690

1.0 10.0

2.656 2.053

9.049 7.810

1.064 1.040

34.81 34.84

5.83 6.20

25.82 27.79

12.90,-3.698 16.22,-3.75
25.58 26.65 --

12.40,-8.562 16.02,-8.60
4300. 70.11

126.1 liiOi--

Worst-Case Numerical Designs

Fictitious State INoise Factor a 0.0

Mean Square x:

Responses 0:

to u_ 5:

x: P.M. (deg)

G.M. (db)

0.948

6.887

1.398

29.24

4.03

0.1

0.777
5.714

1.403

29.20

3.96

1.0

1.597

6.720

1.049

32.71
5.96

10.0

1.432

6.090

0.967

33.33

6.26

0: P.M. (deg) 24.75 22.97 28.69 30.93
G.M. (db) 11.46,-2.828 11.40,-2.623 16.82,-3.637 -3.79

27.79

11.43,-6.977
6770.

5.221

9448.

3.562

28.88

16.70,-8.596
296.0

113.1

5: P.M. (deg)

o.g. (db)

o(s):

29.86

-8.87

9.523

10413
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exponentials

_0 t
X(t) = eAr Be Cr dT

and

jM(t) = fot foV eA(v-S) BeCV DeES ds dv.

Note that the matrix S(t) has the same form as A'(t). Efficient algorithms have already been

developed for the above integrals based on diagonalization of the system matrix. However,

they are prone to inaccuracies and lead to convergence problems in numerical optimization

when the system matrix contains defective degenerate modes. A reliable algorithm for

evaluating these integrals has been developed and its details are given in Section 3.3.
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Chapter 3

Evaluating x(t) and M(t)

3.1 Introduction

Established methods for evaluating X(t) and J_(t) are based on diagonalization of the

system matrices A, C and E in the exponential functions. Diagonalization is achieved

using a similarity transformation derived from the eigenvalue-eigenvector decomposition of

these matrices. It is further assumed that the similarity transformation constructed from

the eigenvector matrix is nonsingular. Let VA, Vc and VE be the eigenvector matrices of

the matrix A, C and E respectively, then

A = VAAAVA 1 , C = VcAcVc 1 , E = VEAEVE 1, (3.1)

where AA, Ac and AE are diagonal matrices. One can express the exponential function of
C At as

e At : e VAAAV;lt = VAcAAtVA 1. (3.2)

Application of this decomposition in the calculation of X(t) is shown below.

x(t) = j[o t eA_-Be Cr dT

(3.3)

where B = VA1BVc. Advantage of this approach is that the exponential function of a diag-

onal matrix is also diagonal. In this case, time integration in X'(t) can be performed directly

by explicit integration of a product of scalar exponential functions. The resulting numerical

algorithm is quite accurate and efficient, provided that the transformation matrices VA and

Vc are not ill-conditioned. A similar procedure can also be applied to the evaluation of

M(t). Complete discussion can be found in Appendices C and D of [18]. Breakdown of

this algorithm will occur when the matrices A or C develop Jordan blocks. This situation

happens frequently in the control synthesis of flexible structures with densely packed modes

as demonstrated in the design example of Section 4.2.

Clearly, in order to have a reliable design algorithm for optimal low-order output-

feedback control synthesis [18], one must develop a robust numerical scheme to evaluate

matrix integrals of the form shown in X'(t) and M(t) in the case where the system has

defective eigenvalues.

r _,_*_: _-J_ !3 _ ;_,,_ _; _ _ ...,, _':';
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3.2 Alternative Approaches for Solving X(t) and A/l(t)

One simple approach is to evaluate

X(t)= eArBeCrdr , _(t)= eA(v-S)BeVVDeESdsdv (3.4)
J0

directly using a numerical quadrature. Efficiency of numerical integration techniques is

poor; especially when it requires small integration step size for satisfactory accuracy in

the case of stiff system matrices A, C and E. Another possibility is to use some types

of algebraic Lyapunov equations for the solution of A'(t) and .h4(t). For example, it can

be easily shown that the matrix A'(t) can be obtained from the solution of the following

Lyapunov equation,

AX(t) + X(t)C = [eAr sec'] _ (3.5)
0

Solution of equation (3.5) exists if Ai(A) + £j(C) ¢ O. As Ai(A) + Aj(C) tends toward zero,

the solution accuracy will degrade on a continuous basis. Furthermore, there are many

situations encountered in practice where this scheme will run into difficulty. For example,

when A = C T and the system matrix has poles at the origin. Thus, for practical purposes

X(t) cannot be solved from a scheme based on Lyapunov equations.

The Lyapunov equation for .hd(t) is even more poorly behaved. By changing the order

of integration, the double integral in M

/0 /0jq_ = eA (v-8) BeOV DeES ds dv

can be re-written as

j_/I = _t { _q eA(q-_) Be-Cr dr} eCt DeE(t-q) d q

Because the matrices A, B, and C are time invariant, one can rewrite the convolution

integral as

eArBe °(_-t) dr = [I O]exp

Applying this to the inner integral of A,t, we obtain

A B 0

This form is used to derive the Lyapunov equation for _d.

With the above equation, we write

dq

dq

t 0 -C ] exp{[ A0 -C ] (t q)}[O]}eCtDeEqEi
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E0(Ei0,oxp{[ 0

 sin thorelationo ([AEeAt0 - t = 0 e-ct , we have

.ME = -[{foteA(t-r)Be-Crdr}eCtD] +ffotBe-C(t-q)eCtDeEqdq

+ fot A { fot-q eA((t-q)-r) Be-Cr dr } eCt DeEq dq

= Bfote-c(t-q)ectDeEqdq-[{foteA(t-r)Be-Crdr}eCtDl

+Af0t([IO]exp{[A 0 _BC ](t-q)} [Oi l}eCtDeEqEdq

Finally, we can assemble the Lyapunov equation for .M as

.ME- AM = B fote-C(t-a)eCtDeEq dq- [{ foteA(t-r)Be-Cr dr} eCtDl

In most applications, the matrix E is equal to A and hence renders the Lyapunov equation
for .M unsolvable.

3.3 Matrix Exponential Approach

Another possible approach is based on the direct use of the exponential of a matrix. It is

well-known [23] that convolution integrals involving matrix exponentials, as represented in

the matrices X(t) and .M(t), can be derived from the matrix exponential of an augmented

matrix. It can be shown that the matrix X(t) can be derived from the upper-right partition

of the following matrix exponential,

X(t)=eAt[I O]exp{I--O A c]t}[0i] (3.6)

Thus, computation of X(t) now involves the computation of a matrix exponential. A reliable

algorithm for computing the matrix exponential is given in Section 3.4.

In a similar fashion, one can express the matrix .M(t) in terms of a submatrix of a

matrix exponential. To see this, we start from its definition

.M(t) = fotfoo"eA("-S)BeCVDeESdsdv

= fote-AS{ffeAVBeCvdv}DeESds

= --fote-As(ftSeAVBeCVdv}DeESds (3.7)
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Let's performachangeof integrationvariablev = t - r. We have,

/0 (/0 }.A4(t) = e -As eA(t-r)Be c(t-r) dr De Es ds

: --j(t°eA(t-s){fot-Se-ArBe-Crdr}eCtDe-E(t-S)d(t_s)e Et

= _teAq{_qe-ArBe-Crdr}eCtDe-EqdqeEt

= fot { foaeA(q-r) BeCt/2e-Cr dr} eCt/2DeE(t-q)dq (3.8)

Notice that part of the integrand in equation (3.7) delimited by braces can be replaced by

terms involving the exponential of an augmented matrix. This follows directly from results

developed for the matrix X(t). With this substitution, we obtain

M(t) = f0t{[/0]exp{[ A Beet/2 ]q} [01 ]}eCt/2DeE(t_q)dq

;: {[ ] }[I 0] exp A Be or�20 -c (t- q)

[ A Be ct/2 0
= [I 0 0] exp 0 -C eCt/2D

0 0 E }[0t_ 0

I
(3.9)

In this section, we have shown that the matrices X(t) and A4(t) can be formulated in terms

of solutions of matrix exponentials. Their evaluation depends therefore strongly on the

accuracy and reliability of numerical methods for computing matrix exponential. We will

present one such algorithm in Section 3.4. However for computational expediency, special

consideration must also be taken to ensure efficiency of the overall scheme when the upper

limit t is large and one of the matrices A, C or D is unstable. Also one must economize

memory requirements associated with high dimensionality of the augmented matrix when

computing the matrix exponential. These considerations will be elaborated in Sections 3.6

and 3.7 where we give precise algorithms for the computation of the matrices X(t) and
A4(t) respectively.

3.4 Numerical Method for the Matrix Exponential

Several numerical methods are available for the computation of the matrix exponential [22].

Among these, an approximation method based on Pads series is found to be satisfactory [23].

An important component in any numerical routine for matrix exponential is the scaling of
the matrix argument prior to the series calculation. Due to the simple result that eAt =

(eAt�2) 2, a scale factor in terms of powers of two (i.e. 2TM) is often used. In this scheme, one

can recover the actual value of the original matrix exponential by performing m squarings
on the matrix exponential of the scaled matrix. The index m is determined based on the

desired size for the scaled matrix. In our algorithm, scaling is applied to the original matrix

until its a-norm IIAIIoo falls below 1/2.

As mentioned above, the preferred series approximation in our computation of the matrix

exponential is the Pads series. Let's review some of the unique features associated with the
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Pad6seriesfor thecaseof a scalarfunction_(z). On its mostbasicterms,it is arational
functionof z of a preselected order that approximates the function _'(z). For a given choice

of the order of the numerator (say N) and of the denominator (say M), the Taylor series

representation of this Padd series must match the power series representation of _-(z) for

the first (N + M + 1) terms. Namely,

jZ(z ) _ pN (z ) _ _N= o A,z'
Biz

(3.10)

In fact, the most common form of the Padd series is known as the diagonal sequence where

the numerator and the denominator have the same order (i.e. M = N). While it is known

that the Padd series for the matrix exponential 9_(z) = ez converges only slightly faster than

the Taylor series for a scalar argument, the improvement becomes significant for a matrix

argument. In the matrix case, Pad6 series involves computation of a numerator matrix

A/'(At) and of a denominator matrix I)(At). For a diagonal Pad6 series of order N, we have

Af(At) (2N - 1)! N! (2N - 2)!N_)I(At)2I + (2N)! (N- 1)! At + (2-_-)t. _ _-

(2N- i)!N! (A., _ N!
+'"+ (2-_).'_iN--i)!" _) +'"+(-_) t.(At)y

and

7)(At) I (2N- 1)!N! (2N- 2)!N!- At + (At) 2
(2N)! (N - 1)! (2N)! 2! (N-2)!

(2N i)!N!
(At) _ +... + (--1)N 2N-_!I(At)N(-1)i (2N)! i! (N - i)! (2N).

+

The matrix exponential is simply given by

eAt = _)- 1(At) iV(At) (3.11)

Invertibility of I)(At) is ensured by proper scaling of the matrix argument At.

Another important consideration in the Padd series is its length N. Assuming that

the matrix At has been scaled such that [[At[loo is less than 1/2, the parameter N can be

choosen according to [23] such that

2 3-2N (N!)2 < e (3.12)
(2N)I (2N + 1)! -

where e is a given desired tolerance for accuracy.

With N determined in the above manner, the nominal error in a Pad_ series approxi-

mation can be thought of as the exact calculation of a matrix exponential for a "nearby"

matrix (At + E) where E is the error matrix with ]]EIloo < enAtUo_. The relative error of

the approximation is bounded by the following inequality,

He(At+E) _ eAtlloo < dlAtllo_e_llAtlloo
ileA,iloo

(3.13)

Thus, reducing the oc-norm of the matrix At would indeed improve the numerical accuracy

of the matrix exponential. It has also been shown that methods by series approximation
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yield better accuracyif the matrix argumenthasbeenpreconditioned[29]. Additional
improvementmaythereforebegainedbyfirst preconditioningtheoriginalmatrix. Another
immediatebenefitof loweringthe oc-norm of the matrix being exponentiated is that the

actual scaling factor m needed would also be smaller; thereby resulting in a fewer number of

matrix multiplications in the squaring procedure. As usual, preconditioning a matrix tends

to bring singular values of that matrix closer together (i.e. lower the condition number),

thus avoiding situation where the scaling factor is predominantly determined by a few large

singular values, and causing significant loss of precision related to the set of small singular
values. The most common method used in the precondition of a matrix is Osborne's method

[25], which minimizes the Frobenius norm of that matrix (and thus indirectly lowering its

oc-norm). However, extensive tests conducted so far seem to indicate that preconditioning

of a matrix does not yield significant reduction in the oc-norm and a smaller scaling factor.

However, Osborne's method is relatively light in terms of computational burden. The

procedure of preconditioning a matrix is nonetheless recommended from the point of view

of improved accuracy ([26], [29])•

In the implementation of our design algorithm for optimal low-order controller synthesis

[18], a value of c = 10-s has been selected, requiring therefore a 4-term Padd series (i.e.,

N = 4) in the evaluation of the matrices A'i(t), £i(t) and .M_(t) of equations (2.58)-(2.60).

Additional considerations in the implementation of the proposed method for computing
X(t) and A4(t) are given in Sections 3.6 and 3.7.

3.5 Preconditioning With Scaling and Rotation

We can liken the original cost function calculation method (that of an eigenvalue-eigenvector

decomposition) as a method that does best when the eigenvalues are widely scattered (at

least, distinct). The matrix series calculation excels when a matrix is homogenized. For the

particular use in a controller optimization scheme, the matrices encountered usually have

widely spaced eigenvalues, but degeneracies in these matrices may still exist.

Scaling the argument matrix to a Padd series to render its co-norm less than 1/2 ac-

commodates a large magnitude eigenvalue (stable or unstable). This same scaling would

lead to roundoff errors for a small magnitude eigenvalue in the same matrix• This potential

problem renewed interest in finding some method that went beyond Osborne's method in

homogenizing a matrix. We attempt such a method by combining the row and column
scaling of Osborne's method with an inverse Jacobi rotation.

Suppose that one chooses a pair of columns and their corresponding rows in a matrix•
Can one find a single rotation and two scaling terms to reduce the Frobenius norm of the
matrix? Consider

Ai+l ---- 7 -1AiT i

cos 0 sin 0
0" 1 0- 2

: • , •

sin 6 cos 0

O'1 if2

• .. A_i ... Ai:

: •. :

• .. A3, ... A::
• ,
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X

• '' O"1 COS 0 •'" 01 sin 0

: ".. :

.... _2sinO ... a2cosO

we want to determine a rotation angle 0 and two scaling terms al and o2 such that

min[ T(1A,T 
F"0_0" 1 _0" 2 I

It would then be hoped that a succession of these transformations would lead An toward a

minimum Frobenius norm value. The Frobenius norm was chosen to see if an easy means

for determining 0, 01, and 02 was even possible. Unfortunately, there is no easy means for

finding these scalings or rotations. The amount of work needed is significant, and thus this

approach was abandoned. It seemed that, among all the alternatives, Osborne's method
was still the best.

3.6 Detailed Algorithm for Computing X(t)

As seen in Section 3.3, the matrix X(t) can be evaluated in terms of a matrix exponential

as shown in equation (3.6). Conceptually, it is a simple and straightforward procedure to

compute the matrix exponential of any arbitrary matrix using the Pad_ series discussed

in Section 3.4. However, it becomes a nontrivial task when we try to implement an effi-

cient algorithm that examines carefully the issues related to accuracy, speed and memory

requirements. To understand the basic difficulties, consider in detail the components of the

matrix exponential used according to our problem defined in equations (2.58) and (2.59)

for the matrices Xi(tf) and/_(tf)

{[-A B] } [e-At e-Atx(t)] (3.14)exp 0 C t = 0 evt

where A = C T :- F 'i + a_I. Clearly, if the system matrix A is stable (i.e. all the eigenvalues

of the matrix A have negative real parts), one could easily encounter numerical overflow

when evaluating the term e-At even though the matrix integrals X(t) and/:(t) are perfectly

well-behaved. The overflow problem occurs most likely in the final squaring process. To

arrive at a feasible approach in the evaluation of X(t), one needs to examine in detail the

steps taken in arriving at the matrix exponential of the original matrix starting from that

of a scaled matrix (i.e. in the squaring process).

Let's assume that one has scaled the input matrix A by AAt where At is a reasonably

small time interval given by At = t/n = t/2 TM. Thus, we need to first evaluate

{[A where t= J =tJ2mexp 0 C

For notation convenience, we define

{[ ]t I eA    eAToecrd ]EoEl-A B At = ---- (3.15)
exp 0 C 0 ecat 0 F "
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Furthermore,let W = exp(AAt) = D -1. Now we can write our result as follows,

X(t) = W'_[D'_-IE + Dn-2EF + Dn-3EF 2 + ... + EF'_-I], (3.16)

or

X(t) = W[E + WEF + W2EF 2 +... + Wn-IEF'_-I]. (3.17)

The above results are produced by performing m squarings of [ D E]0 F and taking the

appropriate submatrix for X(t). In our application (cf. equations (2.58)-(2.59)), the solution

would therefore involve products of matrices of size 2(n + r + n_). Close examination of

equation (3.17) leads to the following algorithm involving only product of matrices of size

(n + r + n _) with the final result achievable in m steps,

Step l:Pl = W, Q1 = E, R1 = F

Step 2 : P2 = p2, Q2 = Q1 + PIQ1R1, R2 = R21

= W 2, = E+WEF, = F 2

°,, .__ °** ,,, : °,, ,°, _ ,°,

Stepm: Pm= P2m-1, Qm = Qm-1, Rm = R 2rn--I

= W '_, +P_-IQm-IRm-1, = F '_

Finally, A'(t) = WQ,,_. It should be noted that one can "absorb" this extra factor of W

(= eAat) into the matrix Q1 without any change to the above algorithm (i.e. starting the

above algorithm with Q1 = WE instead). This removes the need to retain the matrix W

throughout the computation.

Finally, one notes that the terms Pi or R_ for (i = 1, m) may underflow and become a

null matrix for some i ; in particular when the scaling factor is large (i.e. m large). When

this situation happens, one can simply truncate the series calculation for X(t) up to the i th

step in the above algorithm since all of the significant (and nonzero) terms have already

been accumulated into the matrix Qi.

3.7 Detailed Algorithm for Computing A//(t)

Here the numerical algorithm is a bit involved compared to the one given for A'(t). This is

largely due to the increased complexity of the argument of the matrix exponential. Following

the procedure described in Section 3.6, let's perform a scaling upon the input matrix A by

AAt such that computation of the matrix quantities Ado, H, J, P, U and W = V -1 is well-

behaved. These quantities are defined from the following matrix exponential,

/[A ectJ0] }[ H ctJ2exp 0 -C eCt/2 D At = 0 V eCt/2 j

0 0 E 0 0 U
(3.18)

Due to the possible numerical underflow in the matrix eCt/2 for large t, the matrices H and

J are computed directly from the following definitions,

_0 AtH = eATBe cT dTe -cAt (3.19)
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and

AtJ = e -CAt eerDe E_ dT (3.20)
.tO

However, the computation of 2¢Io in equation (3.18) can still underflow due to its explicit

dependence on ect/2. For the calculation of the matrix Azt (t), ideally it can be obtained from

m squarings of equation (3.18). If carried out in this manner, potential numerical overflow

is eminent since, according to our equation for .Mi(tf) in (2.60), we have A T = C = E T =

F i + a_I. Hence, if the matrix C is stable, then the matrix exponential e -ct = V" will

become unbounded. To bypass this difficulty, as in the calculation for X(t), one needs to

conduct the squaring algorithm explicitly. It can be shown that the matrix .h//(t) can be

computed as

M(t) = Pn-lMo + Pn-2MoU + Pn-3MoU2 +... + PMoU n-2 + MoU n-1

+ HW2j + HW3jU + PHW3J + PHWaJU + p2HWaJ + ... + Pn-2HWnJ (3.21)

This formulation no longer involves the matrix V. The above series for .M can be decom-

posed into two parts_ne that contains the matrix Mo and the other that does not. The

terms involving .Mo can be thought of as

[[i o] p Mo 0 (3.22)
0 U I

which can be performed by m squarings. The remaining terms involving H, J, W, P, and

U are computationally intensive and are of the form

n-2n-2

Z _ PiHW2+i+JJUJ where 2 + i +j < n.
i=0 j=0

(3.23)

Without the restriction that 2 + i + j < n, this would have been formed as the product of

two easily computed series,

(H + PHW + P2HW2 +..-)W2(j + WJU + W2jU 2 -4-...) (3.24)

An efficient procedure for computing the final matrix .M(t) is to merge both the easily

computed portion given in equation (3.22) and the more difficult series in equation (3.23)

into a sequence of m steps:
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Step 0 :
Mo H J

Step 1 :
•_1 = lO._o -[- "/_o U H1 = H J1 = J

+HWnJ +PHW +WJU

Step 2 :
J_A2 = P2.hA1 -t- 2_¢[1U2 H2 = H1 -/2 ----J1

+H1 W_-2J1 +P2HI W 2 +W2J1 U2

Step 3 :
]_3 = P4]_42 + _42U 4 H3 = 142 J3 = J2

+ H 2W_-6 J 2 + P4 H2 W 4 + W 4J2 U 4

., . . .....

Step j :

= P2 -lM _l + Mj_IJ-' gj = Yj = Yj-1
n+2_2# " .+H#_IW Jj-1 +P2J-IHj-IW2J-1 +W2_-'Jj-1U2,-_

Step m :
.A/Ira = Pn/2Mm_l + Mrn-1U'n/2 Hm = Hrn-1 Jm = J,n-1

+Hm_lW2Jm_l +Pn/2Hm_lWn/2 +wnl2Jm_lUn/2

P U W

p2 U 2 W 2

pa U 4 W 4

pS U s W s

p2J U 2i W 2_

p_ U n W n

where the final matrix .hJ(t) = .M,_ + H,_W2J,,_. Due to potential numerical underflow,

the term W i-2 is not accurately obtained from the product WiV 2 where V = W -1. Indeed,

one needs to recompute the term W '_+2-2_ at each step of the above algorithm. This could

become the major drawback in our scheme even though we have used an efficient matrix

exponentiation routine that computes W _ requiring at most 21og2(i) matrix multiplies.

Further simplification of the above algorithm can be achieved if we make use of the fact

that we have A = E = C T (cf. equation (2.60)) and therefore U = P = W T. If in addition

W n is zero (or effectively so), restriction on the indices i and j of 2 + i + j <_ n in equation

(3.23) becomes inconsequential. Hence we can express

n-2 n-2

Z P_HW2+i+JJUJ = (H + PHW + P2HW2 +...)W2(j + WJU + W2JU 2 +...)
_=0 j=0

resulting in a simpler algorithm that involves the following three series,

(a)[I°] o u I

(b) (H + PHW + p2HW2 +...)

(c) (J + WJU + W2JU 2 +...)
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This algorithm can again be computed in m steps as follows,

Step 0 :
JVfo H J

Step 1 :
.M1 = P,Mo + A4oU

Step 2 :
A42 = P2.A41 + J_41U 2

Step 3 :
_43 = P%_42 + J_42U4

HI = H + PHW

H2 = H1 + p2H1W2

H3 = H2 + P4 H2W4

J1 = J + WJU

J2 = ,]1 + W2J1U 2

J3 = J2 + W4 J2U 4

Step j :

Mj = p2_- 1M j_ 1

+M j- 1U25-1
Hj -_-/-/j- 1

+P 2j-1H¢_ 1W 2j-1 ..[._W 2j-1 yj_ 1U2 j-1

Step m :
.M,_ = P'#2 A4m_ I H,,_ = H,,,-1 J,,, = J,_- i

+.M,,__ IUn/2 + Pn/2 Hm_ l W'_/2 + W,_/2 J,__ IU,_/2

If, for some index j _ m, W i (and likewise U i and Pi) is zero or nearly so, then the

calculation of .M(t) is reduced to A4(t) = HjW2jj since Mj = 0 where i = 2J.

3.8 Basic Test Results

A direct evaluation of X and A/_ on a degenerate system matrix provides a clear under-

standing of the severity of the errors in the diagonalization method. Consider

-0.5 0.25 0.333
F = 1.0 -1.5 0.0

-1.5 0.75 -1.0

1.0 7.0 4.0]
F = 3.0 9.0 6.0

5.0 2.0 8.0

[69.o17.o41.o1c-_ _+ C'TRC -- 17.0 51.0 18.0 ,

41.0 18.0 74.0

where F is constructed under a similarity transformation from a core matrix A and a

transformation T,

-1.0 1.0 0.0 ] [ 1.0 1.0
A = 0.0 -1.0 1.0 , T= 2.0 -2.0

0.0 0.0 -1.0 -3.0 3.0

Namely, F = TAT -1. In the X computation, the results were

58.37 58.97 30.58 61.90

Xd_ag = 58.97 57.83 45.91 , Xrob_st = 66.04
30.58 45.90 00.00 19.98

--1.0 ]
2.0
3.0

66.04 19.98

71.96 24.70

24.70 31.80
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Asonecansee,thereis reallynocorrespondencebetweenthetwo results.Furthermore,in
comparingtheresultsfor A4, we have

.]_ diag

-3.623 x 109

3.081 x 1017

2.054 x 1017

4.997 x 109

6.162 x 1017

4.108 x 1017

-7.495 x 109

-9.244 x 1017

-6.162 x 1017

2211. 2519. 1230.]
.A4_obust = 1860. 2146. 1153. .

1817. 2133. i475.

With these large discrepancies, it is clear that design optimization based on the diagonal-

izationmethod would fail when defective eigenvalues appear in the closed_oop system.

3.9 A Two-Mass-Spring Design Problem

In this model, the open-loop system has defective eigenvalues at the origin; thus success

of the diagonalization-based approach depends on the removal of this degeneracy through

feedback. Hence, selection of the initial controller guess plays a key role. We consider two

setups to illustrate the problems encountered by the algorithm based on diagonalization.

u,w ly__1 k

Mass1 _ Mass2

Figure 3.1: A Two-Mass-Spring Mass System

Equations for the dynamic model are given below.

or

mill'1 = k(y2 - Yl) + u + w

ra2_l'2= k(yl - Y2)
(3.25)

Yl 1 0 0 0 Yl 0

_ 1/ml
d y_ = 0 -k/ml 0 k/ml Y_ + (u+w) (3.26)
dt y2 0 0 1 0 y2 0

y_ 0 k/m2 0-k/rn2 y_ 0

where ml = m2 --- kl = k2 = 1. The problem is to control the displacement of the second

mass by applying a force to the first mass as shown in Figure 3.1. At the start, it is simple

to verify that the basic open-loop system has a pair of defective eigenvalues at the origin.
We have chosen a second-order controllable canonical form for our controller model,

[0 1] [01A = A21 A22 ; B = 1

C : [CII C12]; D ---- [Dll]
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Thecontroldesignproblemisto minimizethe H2-norm of the following closed-loop transfer

function Ty2_ between the disturbance w and the displacement Y2 of the second mass using

the controller design parameters A21, A22, C11, C12 and Dll. From the initial design guesses,

A21 = -2, A22 = -1, Cll = 0,612 = 0.5 and Dll = 0

The original method based on diagonalization in SANDY [18] converges to the optimal

design gains,

A21 = -0.8571, A22 = -0.9258, Cll = 0, Cl2 = -0.4535 and Dll = -0.2449

and the optimum value of IITu2_ [122= 7.71838215122. A summary of the resulting closed-loop

eigenvalues is given in Table 3.1.

Table 3.1: Closed-Loop Eigenvalues of the Two-Mass-Spring System

Eigenvalue Damping Freq (Hz)

-0.2290 ± 0.3397i 0.559 0.0652

-0.1553 ± 0.8480i 0.180 0.1372

-0.0786 ± 1.2950i 0.061 0.2065

One cannot initiate the search using a compensator design of zero gains (i.e., A21 --

A22 = Cll = C12 = Dll = 0) because, in this case, the closed-loop system would have two

pairs of degenerate eigenvalues at the origin; one for the rigid-body mode and the other from

the open-loop compensator poles. The early algorithm based on diagonalization recognizes
that Jordan blocks are present and the numerical search is halted. Detection of a Jordan

block within SANDYis done by looking at the condition of the eigenvector matrix. If this

condition goes above 1012 or its inverse is less than 10-12 , the design search is terminated

with a failed status. Condition of the eigenvector matrix influences the accuracy of the

matrices 24 and .M. At some point, the loss in accuracy will affect the overall optimization

process. To alleviate this problem, it was suggested that one simply re-start the design

algorithm with any compensator design (stabilizing or not) that initially produces a non-

degenerate closed-loop system. This approach does not provide a satisfactory solution in
general.

A more insidious possibility is exemplified by the following initial design guess,

A21 = -2, A22 = -1, Vii : 0, 612 = 0 and Dll -- 0

It turns out that this case of Jordan blocks is not detected from the condition of the

eigenvector matrix. The diagonalization-based algorithm fluttered around the initial point

and finally terminated with no improvement to the original design guess. The condition

number of the eigenvector matrix associated with this problem was 2.302 x 106, which would

generally be considered acceptable.

The robust form of the algorithm allows convergence of the controller gains in all the

three initial guesses shown. The final result is the same in each case and equal to

A21 = -0.8571, A22 = -0.9258, Cll = 0, C12 = -0.4535 and Dll = -0.2449.

The result is the same as the one determined from a successful run using the diagonalization

algorithm. A history of the inverse of the condition number of the eigenvector matrix for
the initial design guess of

A21 = -2, Au2 = -1, C11 -- 0, C12 -- 0.5, and Dll = 0,
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Figure 3.2: Behavior of Condition Number over the Entire Design Optimization

is shown in Figure 3.2. One can see that condition of the eigenvector matrix varies signifi-

cantly over the entire run. Conceivably, the inverse condition number may jump back to a

low value in a typical design iteration. Not very visible in this plot is the value at the first

iteration of 1.8 x 10 -s for the chosen initial guesses. After the first iteration, the inverse

condition number jumps to 0.166.

The main difference between the robust (Pade-series-based) form and the diagonalized

form is in the CPU time of the overall computation. Results are obtained for a VAX/VMS-

Workstation DEC-3500 as follows: CPU time of 19.59 seconds with the algorithm based

on diagonalization, and 97.36 seconds using the proposed robust algorithm. The increase

in computational load is expected and constitutes the basic trade-off between reliability

and speed. The proposed algorithm is more reliable and with this advantage does take

somewhat longer in computational time.

Although a simple fix to the diagonalized form is to start with a non-degenerate closed-

loop system by using a different initial compensator design, it has been found that the

algorithm could occasionally break down due to the presence of near degeneracies. Thus,

for a reliable design method, the solution algorithm must treat degeneracies as a common

occurrence. This situation is more evident in the optimal output-feedback control design for

high-order structural models with closedly packed flexible modes, and in the design proce-

dure of closed-loop transfer recovery. These cases include a situation where two nominally

independent modes appear as a Jordan block due to roundoff error in a higher order system
(usually 30th-order or higher).

For efficiency, the numerical algorithm currently implemented combines the robust al-

gorithm with the faster diagonal form through a "switch" based on a threshold of 2 x 10 -5

in the inverse condition of the eigenvector matrix. This value is found to be adequate in

detecting defective degenerate cases and computational accuracy of the run is improved by
the intermittent calls to the robust form.
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3.10 Degeneracy During Optimization

Presented here is a model reduction problem that develops a Jordan block during the

optimization process [31]. Consider a model with closely spaced modes,

[1 0 0] [1.1]F---- 0.0005 -1.000001 0 , F= 1.2 , H=[2.1 2.2 2.31, D=[0]
0.0005 0.0005 -1.00001 1.3

Parameter optimization is used to reduce this model to a second-order system by minimizing

the H2-norm of the error. Starting with the following arbitrarily chosen guess

2 -1 ' 1.414 ' Cc=[-5.6160], Dc=[O]

The optimization converges to the following reduced_)rder model,

1.436 -1.625 1.542 , c = [-5.627 -0.107], D = [01

with a final cost function of 4.76 x 10 -7. Diagnostics associated with this run indicate that

while the gains were "optimized", the solution is far from the optimal solution. Inverse con-

dition number of the eigenvector matrix is 1.26 x 10.5 indicating the presence of degenerate
modes.

This degeneracy is confirmed when the optimization was run using the robust form for

the gradient computation. The optimized cost function now has a value of 2.38 x 10-12 which

is much smaller than that achieved under the diagonalization algorithm. In addition, inverse

condition number of the eigenvector matrix is now 9 x 10-6 indicating that degeneracies

occur through the design optimization.

3.11 Conclusions

Numerical algorithms for computing matrix exponentials and integrals of matrix exponen-

tials have been developed to handle cases where the system matrix has defective eigenval-

ues. Special formulation of these algorithms enables reliable and efficient computation of A'

and .A4. These algorithms have been incorporated into the computer-aided design package

SANDY for synthesizing optimal output-feedback controllers. Numerical optimization com-

bined with the given algorithms in the evaluation of the cost function and its gradients with

respect to the controller design parameters is shown to have well-behaved convergence even

when the closed-loop system becomes degenerate. Reliability of the algorithm is further

demonstrated using typical design problems encountered in control of flexible structures.

Clearly, this algorithm, when combined with a previous one based on diagonalization, would

enhance significantly the overall reliability of optimal control synthesis using parameter op-

timization, thereby providing an effective automated design environment for multivariable

control synthesis.

To further improve the efficiency of the robust algorithm, a hybrid form combining the

benefits of both the diagonalization-based form and the robust form has been developed.

There are two major components to this algorithm. The first one is a means of reliably

decomposing the system matrix into two parts: a diagonal block containing nondefective
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modesand diagonalsubblockscontainingthe defectiveportions. Details arepresented
in Appendix A. The actual calculationof X and M areperformedin the secondstep,
consistingof elementsin the diagonalization-basedform, the robustform,andnewcross-
term calculations.Detailsarediscussedin AppendixB.
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Chapter 4

Control Design for a Large Space

Structure

4.1 Introduction

In this chapter, we present a control design problem that poses significant difficulties to

the early design algorithm based on diagonalization. The system model contains numerous

densely packed flexible modes primarily due to the symmetry in the configuration of the

structural design. There is a high likelihood of numerical degeneracies due to round-off in

a finite-precision machine. The associated eigenvector matrix tends to be ill-conditionned

and this problem occurs frequently during the design optimization.

4.2 JPL Large Space Structure

Defective degeneracy in low-order systems can be easily identified and the problem possibly

remedied through simple changes in the model parameters. For example, transverse Dryden

turbulence filters contain a pair of degenerate real roots; these filter poles can be perturbed

slightly to produce a non-defective system with virtually no loss of accuracy in the calcu-

lation of power spectral densities. Most linear time-invariant controller state matrices can

be represented in a canonical form with 2x2 blocks along its diagonal of the form

[01]2 -2( o "

Clearly a choice of _ = 1 would lead to a degenerate subbloek.

In control problems for large flexible mechanical systems such as space structures, causes

of eigenvalue degeneracies are usually more subtle in nature than the simple case presented

in Section 3.9 for a two-mass-swing system. The JPL large space structure has been

carefully designed to simulate a lightweight, non-rigid and lightly damped structure in a

weightless environment [28]. The structure itself resembles a large antenna with a central

boom-dish apparatus and an extended dish consisted of hoop wires and 12 ribs. There are

two torque actuators (labelled HA1 and HA10) on the boom and dish structure to control

the two angular degrees of freedom in pointing maneuvers, and force actuators at four rib

root locations (labelled RA1, RA4, RA7 and RA10) for vibration control. Prom the point of

view of control design, it is a challenging problem, since the plant has many closely spaced

modes and is of reasonably high order. There are a total of 30 modes in the basic structural
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model. The flexible modes are lightly damped with damping ratios ranging from 0.007 to

0.01. The two rigid-body modes have a damping ratio of 0.12. Our design concept is to use

two available angular displacement sensors HS1 and HSIO of the boom-dish apparatus and

the two torquers HA1 and HAlO collocated with these sensors for control synthesis. With

Table 4. h Open Loop Modes of the Antenna Structure

Eigenvalue Damping Freq (Hz)

-0.09500 i 0.7860i

-0.08575 ± 0.7093i

-0.02802 ± 4.0024i

-0.02929 ± 4.1844i

-0.07405 • 10.583i

-0.07405 ± 10.583i

-0.11310 • 10.616i

-0.11785 ± 16.384i

-0.21365 ± 30.520i

-0.21365 • 30.520i

0.120

0.120

0.007

0.007

0.007

0.007

0.007

0.007

0.007

0.007

0.12600

0.13704

0.63701

0.66598

1.68434

1.68434

2.57123

2.67929

4.85749

4.85749

this selection, 20 of the flexible modes associated primarily with the rib motion become

uncontrollable and unobservable. These modes are removed by modal truncation from our

plant synthesis model. Eigenvalues of the remaining 10 modes are shown in Table 4.1.

4.3 Controller Design

An optimal low-order controller is designed to dampen vibration of the antenna in response

to external excitations. To evaluate the effectiveness of the control system, we perform

the following test. The entire structure is agitated using the two boom-dish actuators for

the first 6.4 seconds with an applied torque in the form of a square wave of 0.8 second in

width and with an amplitude of 1 N-m. The control system is then activated right after

the excitation has been removed, and responses of the excited structure at the sensors are

examined. The design objective is to damp out the induced vibration as fast as possible

without excessive use of controls. Note that the natural responses of the structure will take

about a few minutes to decay to zero (Figures 4.2 and 4.3).

For practical implementation, the controller design is choosen to be of 6 th order. The

controller structure consists of a pair of tightly coupled second order systems each with

[0 1]dynamics of the form __o2 -2_a3 a pair of actuator lag states,

A _

-50 0 A13 A14 A15

0 -50 A23 A24 A25

0 0 0 1 0

0 0 Aa3 A44 0

0 0 A53 A54 0

0 0 A63 A64 A65

A16

A26

0

0

1

A66

Bll BI2

B21 B22

B31 B32

B41 B42

B51 B52

B61 B62

(4.2)

c=[50 0 0000]0 500000 '
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The two first_)rder lag statesin the controllermodelserveasroll-off filters, limiting the
controlbandwidthto lessthan 50 rad/sec. In the designoptimization,wehavea total of
28designvariables:16 in the controllerA matrix and 12 in the B matrix. The objective

function for design optimization consists of a sum of weighted H2-norms of physical response
variables observed at different locations of the structure. It is of the form

J(ti) = Lim 1 QiEa y_(tf) +__RjEa u2(t$) (4.3)
tf---_oo 2 j=l

Note that the expectation operator E_ [,] is for a system destabilized by a factor a. Table 4.2

lists the design variables y_ and their corresponding penalty weightings Qi. Also given in

Table 4.2: Design Variables: JPL Antenna Structure

Variable

RS1

RS4

RS7

R ¢10
HS1

HS10

RS1

RS4

RS7

RS10

HS1

HS10

Variable

HA1

Q_ Description

4100 Rib #1 root velocity

3950 Rib #4 root velocity

3975 Rib #7 root velocity

4050 Rib #10 root velocity

16500 Hub angular velocity

15600 Hub angular velocity

1100 Rib #1 root displacement

i050 Rib #4 root displacement

1150 Rib #7 root displacement

1025 Rib #10 root displacement

3900 Hub angular displacement

4100 Hub angular displacement

P_ Description

41 Hub torque actuator

HA10 40 Hub torque actuator

the table are the control design weightings Rj for the actuators HA1 and HA10. Responses

in the above objective function are evaluated to random disturbances of unit white-noise

spectra applied simultaneously at all the hub and rib actuators. One may notice that the

values of related weighting terms are perturbed about a nominal. With this nominal value

as the weighting factor, the perturbation was for avoiding degenerate modes in the optimum

design.

The design optimization begins with the following

matrices A and B,

A

-50 0 1 0 0 0

0 -50 0 0 1 0

0 0 0 1 0 0

0 0 -2 -1 0 0

0 0 0 0 0 1

0 0 0 0 -4 -4

arbitrary initial guess on the controller

0.1 0

0 0.1

0 0
; B=

0 1

0 0

1 0

A destabilization factor a of 0.071 was used to ensure that all the closed-loop eigenvalues

have a real part less than -0.071. The optimization fails to converge when a destabilization
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factor of greaterthan0.075wasselected.This difficulty seemsto be in movingthe modes
at 1.68Hzunder this controllerconfiguration,implying that additionaldegreesof freedom
must beaddedto the controllerstructuregivenin equation(4.2),in order to improvethe
performancefurther.

Whilethe optimizationconvergenceitself took 13.5hoursona VAX/VMS Workstation
DEC-3500,the proposedalgorithm for the calculationof the objectivefunction and its
gradientswith respectto the designparametersis robustandleadsto well-behaveddesign
convergence.The final optimalvaluesof the A and B matrices are

A __

-50 0 2.874 -2.270 1.7322 X 10 -3 -2.2131 x 10-4

0 -50 1.225 0.7825 6.551 -1.037

0 0 0 1 0 0

0 0 -15.73 -0.8799 0 0

0 0 1.560 0.2256 0 1

0 0 2.400 -1.269 -13.62 -0.9810

B

5.343 -1.2310 x 10-4

6.2118x 10-4 4.783

2.701 -8.1595 x 10-4

2.221 9.3152x 10-4

-0.5147 5.379

1.614 -1.252

(4.4)

Closed-loop responses of the sensor and control variables corresponding to this design are

Table 4.3: Boom-Dish-Controller Closed Loop Modes

Eigenvalue Damping Freq (Hz)

-0.086899 ± 0.6588i

-0.089071 + 0.7410i

-0.3165 + 3.624i

-0.2528 + 3.790i

-0.2162 + 4.112i

-0.2056 + 4.185i

-0.074193 4- 10.58i

-0.074589 + 10.58i

-0.1168 4- 16.15i

-0.1253 4- 16.83i

-0.2142 4- 30.52i

-0.2143 4- 30.52i

-49.99

-49.99

0.1308

0.1193

0.0870

0.0666

0.0525

0.0491

0.0070

0.0070

0.0072

0.0074

0.0070

0.0070

1.000

1.000

0.1058

0.1188

0.5790

0.6045

0.6553

0.6669

1.684

1.684

2.570

2.678

4.857

4.857

7.956

7.956

shown in Figures 4.2 and 4.3. The controlled responses decay to zero in about 20 sec after

the excitation has been removed. Notice that the control torques are within the desired

limits of 1 Nm; the results are obtained through the control design weights Rj in Table 4.2.
This design example demonstrates the usefulness of a design algorithm for robust low-order

controllers using parameter optimization, and the accompanying improvement of solution

reliability using the algorithms described in Sections 3.6 and 3.7 for degenerate systems.
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Chapter 5

Closed-Loop Transfer Recovery

5.1 Introduction

Multivariable control has evolved over the last decade. Methods for synthesizing control-

laws using optimal control from linear quadratic regulator to linear quadratic gaussian de-

signs have been studied extensively. Robustness issues of LQG have led to the development

of the concept of loop transfer recovery [1]. Recent work by Saberi et. al has fundamen-

tally examined the loop transfer recovery based on a system theoretic approach [11]. In

this chapter, we review briefly the concept of closed-loop transfer recovery which is an ex-

tension of the loop transfer recovery method for the recovery of closed-loop input/output

behaviour. Observer-based controller designs for CLTR will be presented to illustrate the

design concept. A new alternate approach based on numerical optimization is developed

to solve CLTR designs for low-order compensators. This approach is then applied to the

synthesis of a high-bandwidth control system for a rotorcraft in Chapter 7.

5.2 Analysis of Closed-Loop Transfer Recovery

For performance and robustness, multivariable control synthesis usually begins with the

design of a state-feedback controller. A state-feedback design based on LQR techniques

involves only the solution of Riccati equations and provides a convenient and efficient way to

examine the control problems in terms of achievable performance and robustness. However,

state-feedback design is not practical due to its requirement of noise-free measurement of

all the states, but such a design can provide a target response for output-feedback designs

using loop transfer recovery (LTR). Recovery of closed-loop transfer functions achieved

under state feedback is classified under the category of closed-loop transfer recovery. This

concept has been developed in [11]-[12] using full and reduced-order Luenberger observers.

Designs can be solved using Riccati equations. This approach is later extended to arbitrary

low-order compensators using numerical optimization.

The premise of CLTR is simple. Consider a linear time-invariant plant

2(t) = Fx(t) + Fw(t) + Gu(t) (Dynamics)

z(t) = Hcx(t) + Dc_w(t) + Dcuu(t) (Criteria)

y(t) = Hsx(t) + D_w(t) + Ds_u(t) (Sensors)

where w(t) represents the command/disturbance input vector and u(t) is the control input

vector. We assume that a state-feedback design u = Kx has been obtained that achieves
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the desired closed-loop properties in the transfer function Tzw(s) between the input w(t)

and the output z(t). Many different design methods can be used, e.g. H2-optimal control

[15], Hm-optimization [4], and others [33]. A state-feedback design is totally characterized

by the gain matrix K and delineates the achievable performance. The actual performance is
often limited due to a restricted set of measurements and the associated sensor noises. The

problem reduces to finding output-feedback controllers to recover as much as possible the

performance achieved under state feedback. The solution can be found using the concept

of closed-loop transfer recovery with the recovery error defined by

E(s) -----T°w(s) - Tz_(s) -= Tzu(s)M(s) (5.1)

where Tz_(s) and T°w(s) are the closed-loop transfer functions between the disturbance

input w(t) and the criterion output z(t) of a state-feedback and observer-based output-

feedback designs respectively. The transfer function Tz_, (s) is simply the closed-loop transfer

function between the control input u(t) and the criterion output z(t) under state feedback

(independent of the output-feedback design). The transfer function M(s) takes on different

forms depending on whether a full or a reduced-order Luenberger observer has been used

[11]. The structure of the auxiliary transfer function M(s) is defined explicitly in Sections 5.5

and 5.6. The CLTR procedure for observer-based controllers addresses the minimization

of the norm of IIM(s)H whose solutions can be found from Riccati-based methods in either

//2_ or H _ based optimization. However, minimization of the norm of the actual error

function liE(s)[[ can only be done using numerical optimization schemes to be discussed in
Section 6.2.

5.3 The Special Coordinate Basis

Analysis of closed-loop transfer recovery can be effectively performed when the system model

is transformed into a Special Coordinate Basis (SCB) [10]. Under the SCB transformation,

many system properties can be identified: right and left invertibility, system invariant zeros,

infinite zero order structure and the related geometric subspaces.

Appendix C presents an alternative approach underlying the conceptual development of

the SCB transformation following similar notation as given in [10]. Other useful applications

of the SCB properties are found in H 2 and H _ optimization [33].

Let's consider for simplicity a strictly proper system. The basic notion of the S.C.B. is

to divide up the system states into internal states and output states. The output states are

either themselves outputs or are inputs to a cascade of integrators leading to the outputs.

The state at the top of each cascade will either have one control term entering into its

state equation, or it will not have any control input at all. Thus each cascade of output

states will belong to one of two classes. The internal states are the remaining system states

that do not fall into this category. The internal states can be collectively thought of as

providing feedback to the system from the outputs (Figure 5.1). The class of internal states

is subdivided into those states that are controllable with those control inputs not present

in the dynamics of the output states, and those states which are not controllable with these

inputs. This partition is slightly analogous to that of the output states. Note that if an

"internal" state has an input term that directly affects an output state, then this input can

simply be replaced by the corresponding output state and hence leaving this internal state

with no direct input term. In summary,

58



U

?2

/

\\
/

/

Output States

Internal States

Y

Figure 5.1: S.C.B. Diagram

Internal States Output States

Xa : Xc : Yf : Yb :

No direct input Direct input v Direct input u No direct input

(u and v disjoint)

Invariant zeros are the eigenvalues of the partition of the SCB transformed system matrix

corresponding to the states x_. Left and right invertibility are easily visualized in the SCB

transformed space and are not to be confused with controllability and observability. Left

invertibility can be defined as follows: for a given set of outputs, there exists a unique

set of inputs that generates these outputs. A system is left invertible if the states xc are

non-existent. Similarly, it is right invertible if the states Yb are non-existent.

The condition of left invertibility is not the same as that of observability. All the output

states y/ and Yb are observable, so a lack of observabflity may only exist in the internal

states xa and xc. By the same token, some of the output states Yb and/or some of the
internal states xa may be uncontrollable.

The SCB transformation allows designers to examine the general system input-output

properties for a given set of inputs and outputs. It should be noted that the inputs can

be either controls and/or disturbance inputs, and the outputs can be either sensor and/or
criterion outputs.

In the context of closed-loop transfer recovery, conditions for either exact or asymptotic

recovery depend on the system input-output properties between the disturbances w(t) and
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the sensoroutputsys(t) for the state-feedback stabilized system

2(t) = (F- GK)x(t) +Gu(t) + Fw(t)Ey._: ys(t) = H_x(t) + D_u(t) + D_w(t) (5.2)

This analysis applies only to recovery designs with a full or reduced-order observer-based

controller. Issues related to controllability are implicitly resolved with the existence of

a suitable state-feedback law. In the next section, we recall some basic conditions for

recoverability obtained in [11] for observer-based controllers.

5.4 Conditions for Exact and Asymptotic Closed-Loop Trans-

fer Recovery

As previously mentioned, we need to examine the SCB properties of the system Ey._ be-

tween the disturbance input w(t) and the sensor output ys(t). It has been shown [11] that

recovery is possible if this system Ey.,, is left invertible and has stable invariant zeros. For

the case of full-order observer-based controllers, exact recovery is possible if furthermore

the system Ey.,, under the SCB transformation has no yf states; otherwise, one can only

achieve asymptotic recovery. In another word, full-state feedback design is not recoverable if

the system Ey._, has xc states (i.e., not left-invertible) or nonminimum phase (i.e., invariant

zeros on the right-half plane).

In the case of reduced-order observer-based controllers (i.e., Luenberger observer), we

have the same recovery conditions as in the case of full-order observer-based controllers.

However, exact recovery is still possible even when there are output states yr. The exact

recovery condition requires simply that each output state in Yl is separated from the inputs

u(t) by at most one integrator. If more than one integrator exists between them, then the

recovery can only be achieved asymptotically.

A more complete discussion on recoverability of observer-based controllers can be found

in [11]. For non-recoverable systems, the nonzero values of the auxiliary transfer function

output M(s) are transformed to the actual error

E(s) --- Tzu(s)M(s)

which could be quite large for a nonzero M(s). For the non-recoverable case, the CLTR

design problem is more appropriately addressed through minimization of the actual recovery

error E(s), which makes the use of numerical optimization necessary to determine the design

solution. This design approach is presented in Chapter 6.

5.5 CLTR Design with a Full-Order Observer-Based Con-

troller

Consider the recovery error achieved under a full-order observer-based controller [11],

El(s) = T<j>(s)- Tzw(S) = Tzu(s)Ml(s)

with Tz_,(s) is the closed-loop transfer function between the control u(s) and the criterion

output z(s) under the state-feedback design. Similarly, Tz,,(s) is the closed-loop transfer
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betweenthedisturbancesw(s) and the criterion output z(s). The transfer function T<j > (s)

corresponds to the closed-loop system with a full-order observer-based controller.

Consider the following plant and full-order observer-based controller,

Plant

= Fx(t) + rw(t) + Gu(t)
z(t) = Ucx(t) + D_w(t) + D_u(t)

ys(t) = Hsx(t) + Dsww(t) + D_u(t)

Fhll-Order Observer-Based Controller

_(t) = (F- K°bsH_)2(t) + Gu(t) + K°b_ys(t)

u(t) -- K_(t)

where K is the state-feedback gain matrix and K °bs is the observer gain matrix to be

determined under the CLTR procedure. The auxiliary error Mr(s) can be described directly

in terms of the following state model

Mr(s) = K(sI - F + K°bSHs)-1(r - K°bSDsw)

Mr(s) (F T T ob_T F T HTKobsT)-IK T= - Dswg )(sI- +

The system transfer function M_(s) can be described by the following auxiliary system

2(t) = FT2.(t) + HTft(t) + KT@(t)z(t) = FT.(t) + DT_ft(t)

under the state-feedback control _(t) = --K°b_T2(t). Synthesis of the observer gain K °bsT

can be performed through the minimization of the H2-norm of the criterion output 2(t) as

in an LQR state-feedback problem. Namely,

minf°°_T(t)2(t)dt=minfo°°[_T(t) fiT(t)] [ FF T FDT_, ] [2(t) ]K°b"Jo KO_, DswF T DswDs T ft(t) dt

This problem is a singular H2-0ptimal control due to the fact that the weighting matrix

D_,D_ T is usually singular. One can solve this problem by introducing a small perturbation

into the singular portion of this matrix. To do this, we first perform a singular value

decomposition on Ds_, as follows,

T T
Dsw = UDEDV T =_ DswD T = UDEDEDU _

where

EDE _ =

a_ 0 0 .-.

0 a 2 0 ...

: °o.

0 ... a_ ... 0
0 ... 0

0 : "'.

Singularity of a matrix is usually defined relative to its maximum singular value as in the

definition of the condition number. Let's choose a small perturbation equal to ea_ with e in
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the vicinity of the machineprecision.If this numberis greaterthan a 2 for some m, then

one would perturb the matrix DswDT_ by

Rl=[DswDTw]Perturbed=DswDsT÷ea2UD [ [0](m-1)×(m-1)0 [I]0]

This problem can be solved as a regular LQR problem and solution obtained from an

algebraic Riccati equation

_ SHTR ,- IHsS

with K °bs = R '-1 (HsS + D rT). Let's define E(s,e) = T<_>(s,e) - Tz_(s) associated

with the family of closed-loop transfer functions T<_>(s, e). One can examine the asymp-

totic properties as e ---*0. If the conditions for exact recovery are satisfied, then for c _ 0,

the gain matrix K °bsT will converge to a finite gain matrix as E(s, e) _ O. Otherwise, some

of the gains in K °bs will approach infinity. Closed-loop responses of the state-feedback

design associated with infinite zeros of the system Ey_w will not be recovered asymptoti-

cally while those corresponding to the finite stable invariant zeros will be exactly recovered.

In the case of asymptotic recovery, although E(s, e) _ 0 as e ---* 0, one must pick an e

representing a desired level of recovery along with a reasonable finite gain for K °b*.

5.6 CLTR with a Luenberger Observer

In the Luenberger observer design, some of the measurement outputs are assumed to be

noise free. For a given state-feedback matrix K, a controller based on the Luenberger
observer is of the form,

i_(t) = Lv(t) + Mlys(t) + M2u(t)

_(t) = Pv(t) + Jy_(t)

u(t) - K_(t)

with

and

QF - LQ = M1Hs, M2 = QG,

JHs + PQ = In

Note that n is the order of the plant mode].

Without loss of generality, we can always transform the plant model such that the

noise-free outputs of ys(t) become a subset of the system states (see [11], Section 4.2).

22(t) = F21 F22 x2(t) + G2 r2

z(t) = H_x(t) + D_w(t) + D_,u(t)

[yo(t)] [ 0 g_,o2 ] [ xi(t) ] [ D_,o ]w(t )ys(t)= yl(t) = Ip-mo 0 x2(t) + 0
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Clearly,anobserverisneededto estimatethestatesx2(t). Defining an observer gain matrix

Kr°bs = [Kr_ s, K_ s] whose partitions correspond to the measurement outputs yo(t) and

yl (t) respectively, we obtain a controller with a reduced-order Luenberger observer of the

form [12],

i)(t) -_- norv(t) -Jr (G2 - _'rlL_°bS_lJ_ u(t) -_- Kr_oSyo(t)

-_- (g21 - /Xrl"°bsl:'_-rll___norgr°_l s) yl(t)

[ ] [.o]e(t) = o yl(t)
I,_-v+m o K_ s

u(t) = -g_(t)

where

K °bs H obsAw -- F22 - rO s,02 - Krl F12

We also partition the state feedback gain matrix K = [K1, K2] in accordance with the state

partitions x l (t) and x2(t). The recovery error can then be written as in [11],

Er(s) <r>= (s) - = T  (s)Mr(s)

where <r>T;,o (s) is a closed-loop transfer function incorporating a reduced_rder observer-

based controller, and

or

where

Ar =/;'22 , Br =F2,

Cr = F12 ' rl

As in the case of full-order observer-based controller, an auxiliary system can be constructed

such that its closed-loop transfer function under a "state-feedback" law is equal to MT(s).

It is given by

{ ,(t) = AT2r(t) +cTa(t) + KT(v(t)2(t) = BT2_(t) + DT_(t)

and ft(t)=-K_S2_(t).

The reduced-order observer design gain matrix K_ s can be obtained from the mini-

mization of the H2-norm of the criterion output 2(t). If the associated LQR problem is

singular, one can perturb the weighting matrix DrD T in a design approach similar to the

that presented in Section 5.5. As in the full_srder observer case, closed-loop responses

corresponding to finite stable invariant zeros will be exactly recovered. Furthermore, re-

sponses associated with first_)rder infinite zeros will also be exactly recovered. Responses

corresponding to infinite zeros of second and higher order will be asymptotically recovered.
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5.7 Conclusions

In this chapter we introduced the concept of closed-loop transfer recovery. Analysis of

recoverability using observer-based controllers can be done using system properties derived

from the SCB transformation. A procedure based on Riccati solutions is given for the design

of full and reduced-order observer gain matrices.
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Chapter 6

CLTR Using Numerical

Optimization

6.1 Introduction

Although numerical optimization provides a powerful design tool for the synthesis of multi-

variable control systems, its usage is still limited. Difficulties often encountered in optimal

control synthesis are related to how one formulates the design problem to account for all

the basic requirements in stability, performance and robustness. Even in H2/H°°-optimal

control, extensive design trade-offs are often needed before a satisfactory optimum design

can be found. Some of the trade-offs reside in the selection of a quadratic performance in-

dex. Here, one needs to identify, through successive trials, the appropriate design criterion

variables, the control variables, and their relative effects on the overall design. The process

tends to be computationally intensive and time consuming if one considers direct synthesis

of low-order controllers using numerical optimization. However, if the control problem can

first be solved under the setting of state feedback whose solutions can easily be obtained

from the algebraic Riccati equation, one can then proceed to the design of output-feedback

controllers using the concept of closed-loop transfer recovery. The merits of this approach

are that few design iterations are needed in obtaining an output-feedback controller, espe-
cially when a low-order controller is derived from the order reduction of an observer-based

controller that achieves exact recovery.

In this chapter, we address the problem of closed-loop transfer recovery using an ar-

bitrary controller structure. As indicated in the previous chapter, analysis and design of

closed-loop transfer recovery are well developed in the setting of observer-based controllers

[11]-[12]. These results form the baseline designs to CLTR using numerical optimization.

Performance and robustness achieved under observer-based controllers serve as guidelines

in defining a satisfactory output-feedback design of lower order. A tentative low_)rder con-

troller design can be obtained from order reduction of an observer-based controller using a

balanced truncation method. Hankel singular values of the observer-based controller model

can be used to determine the possible order of the dynamic compensator in numerical op-

timization. The advantage of numerical optimization is that it allows designers to seek

controllers of a specific (practical) order and structure in the recovery of the closed-loop
characteristics achieved under state feedback. The numerical scheme can further be used to

re-optimize the recovery error over a given control/command bandwidth using frequency-
shaped filters.
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6.2 Problem Formulation

In this section, we define the problem associated with closed-loop recovery using an arbitrary

dynamic compensator. Under this setting, there is no longer the simple relation for the

recovery error as defined in equation 5.1.

For a dynamic compensator of the form

2c(t) = A_x_(t) + B_y_(t)E_: u(t) = C_x_(t) + Dcys(t)

analytical results for closed-loop transfer recovery analysis and design are not possible

in general. Closed-loop transfer recovery problems presented in [11] and [12] apply only

to observer-based controllers. Given a recoverable system for an observer-based design,

a controller with the general structure shown above is also likely to recover the desired

state-feedback properties.

With H 2 optimal control, H °_ optimization, pole placement, or other design techniques,

one can determine a set of state-feedback gains K that meet desired closed-loop character-

istics through the control u(t) = -Kx(t). The resulting closed-loop system

21(t) = (F-GK)xf(t)+Fw(t)Ezw: z(t) = (He- DcuK)xI(t) + D_w(t)

defines the ideal transfer function T_(s) to be recovered with an output-feedback design.

In the design approach based on direct optimization for CLTR, the quantity being

minimized is the actual error

E(s)

rather than the auxiliary transfer function Mr(s) (equation 5.1). Typically the disturbance

input w(t) is modelled as white noise. Frequency shaping can be introduced into w(t) using

additional filter dynamics

{ =w(t) = Hwx, (t) + D  7(t)

where r/(t) are white noises. The overall synthesis model, including the noise shaping

filters, the state-feedback target system dynamics, the open-loop plant, and the controller
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dynamicsis givenby

Y]e :

_(t)
_j(t)
_(t)
_c(t)

F_
rH_
rH_

0

0 0

0 0
+

G 0

0 Ir

0 0 0

F- GK 0 0

0 F 0

0 0 0

x_(t)
xi(t)
x(t)
xc(t)

FW

F Dto
+ FDw

0

_(t)

I lu_(t)
xc(t)

ye(t) [D_oH_ 0 H_ 0 ] _Ix_i!i [D_oD_° ]
0 0 I_ + rl(t)

[os ,o][u t ]+ o o uc(t)

where e(t) is the recovery error, and ye(t) is the measurement output vector augmented

with the states of a dynamic output-feedback compensator of order r. Feedback control is

conveniently implemented in a static output feedback form

u_(t) = Coy_(t) = B_ Ac y_(t).

The CLTR problem for a dynamic output-feedback compensator reduces to finding a gain

matrix Co that minimizes a certain norm of the recovery error, or

_on Jdtr(Co,tl).

For the H 2 norm of the recovery error, the disturbance inputs are treated as white noises

with E[zI(t)rl(T) T] = WoS(t - T). The corresponding H 2 cost is given by

J_ur = lim E r _|eT(tf)e(tf)|.
tf "---*O0 [ - - - -j

By Parseval's theorem, it has the equivalent form

Jdtr = -_ [Tzw(jw) - T_O(ja;)] Wo_ d_

in the frequency domain. It can be extended to include a frequency weighting W(jw) as
follows

lffJdtr 7r H[rzto(jw) - T_zw(jw)] W(jw)ll 2 dw.

Due to the difficulty in finding an analytic solution for a general controller structure, a

minimum J_Lt_ is often obtained by nonlinear optimization techniques.
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Difficulties in numericaloptimizationfor the CLTR approachareassociatedwith the
followingtwo factors. The first is that polesof the closed-loopsystemin the output-
feedbackdesignareoptimizedtowardthoseof the '_reference" state-feedback system. While

the eigenvalues are coming closer together, the modes themselves remain distinct because the

dynamics of the state-feedback and the output-feedback systems contained in the synthesis

model remain distinct. The typically large size of the overall system matrix brings in the

second factor. Roundoff in computations involving large system matrices could cause non-

degenerate modes with the same eigenvalue to appear degenerate. With degenerate modes,

or correspondingly, defective eigenvalues in the system matrix, algorithms for computing

the cost function and its gradient based on an eigenvalue_eigenvector decomposition will

break down. Since a degenerate system matrix is likely in the CLTR procedure for most

practical problems, one must employ techniques for computing the cost and its gradient
that are immune to this condition.

6.3 Feedforward Controller in the CLTR Design Procedure

We present a design approach for feedforward gains in numerical CLTR. Determination of

the feedforward gains in the optimization process would certainly provide the best responses.

However, because the feedforward gains do not affect stability, one need not include them in

the controller optimization process, thus reducing the number of parameters involved and

saving computation time.

A particular feedforward structure is chosen here for convenience. Given a feedback

controller design, the basic idea is to construct a feedforward gain to achieve the desired

steady-state relations between command inputs and the commanded outputs. Although

we limit the scope to constant gain matrices, the resulting solutions are often non-unique.

First and foremost, we review the computation of feedforward gains for the state feedback

case. In the subsequent sections, we consider observer-based controllers followed by the

case for a general controller structure.

6.3.1 A Feedforward Controller under State-Feedback

This is the simplest case of feedforward controller design. We write the system dynamics

and commanded output in a single set of equations

y e(t) = D _md Ucmd ( t )

Here u,_u(t) is the direct control input derived only from the command feedforward gains

acting upon yr_:(t). A feedforward controller is then determined such that the system

outputs y_,_d(t) match the command reference inputs yr¢/(t) in steady-state, i.e., when

_(t) -- 0. Solving equation (6.1) for steady-state values of the states and the control inputs,
we have

[ ]E ]xss (F - GK) G 0 (6.2)
Ucrnd = (Ccmd -- DcmuK) D_r_ Yre/

or

Ucmd N Yref
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Figure 6.1: State Feedback System with a Feedforward Gain

where xs_ is the steady-state value of x, and

[ ]-'[][L] (F-GK) G 0

[ ]N = (Coma DcmdK) Dcmd I

From this, we can deduce that Uc,nd(t) = Nyref(t) and therefore Kyy = N. Very often the

matrix

(Cc_a - D_._aK) Dc_

is not full rank, therefore we must take the pseudoinverse rather than the actual inverse.

This signals the existence of more than one solution to the feedforward gains (we have more

degrees of freedom than necessary). This feature comes in use when we pick convenient

solutions to some of the eases that follow.

Considerable simplification can happen when one considers command inputs to integral

states. There are two similar, but distinct cases involving integral states recognized here.

In the first case, the integral states are part of the plant model

_(t) F 0 + 0 ]u(t)"0
Assume there is no direct control input into either the integral states or the commanded

output Ycmd (GI = 0 and D_T,d = 0). Partitioning the state feedback gain matrix into

[K Kr], the overall system would look like

_(t) ]
_(t) =

y_,_d(t)

F- GK -GK 1 G

F f 0 0

0 Ccmd 0

x(t)
xt(t)

u_,_(t)
(6.3)

Again, the steady-state solution would correspond to 2 = 0, _r = 0, and Ycmd = Yr_f. Let's
KIC-1 r -1= K C_d. (It is assumed,consider an alternative solution Ucma c_ndYre$ or K H =

without loss of generality, that Ccmd is full rank). With this feedforward gain, we have
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I C-Ixss = 0, and Xss = cmdYref" Other nontrivial solutions (nonzero xs_) of equation (6.3) are

possible.

The second case involves plant dynamics that are augmented with the integral states

_I(t) = y_md(t) --y_ef(t). The combined equations for the augmented system dynamics and

the commanded output are given by

gc1(t) + y_ef(t) = Ccmd 0 D_d x_(t)

Ycmd( t ) Ccmd 0 Dcmd Ucmd ( t )

In steady_state, we have

F- GK -GK I G

Ccmd 0 Dcmd

Ccmd 0 Dcmd

(6.4)

Xas

Ucmd

0

= Yre$

Yref

or

[rc oK,c]Ccmd 0 Dcmd YreI
Ucmd

While this can be solved for K H as before for uc,_d = Klfy_ I, it must be noted that the

command path through the integral states will govern the long-term command response.

The structure of the above equations guarantees the existance of more than one nontrivial

solution (x_ # 0) for Kff when such a solution exists, allowing a choice of transient

responses to command inputs. Often K H is set to zero.

6.3.2 A Feedforward Controller with Observer-Based Controllers

Design of the feedforward gain matrices KII and Gc (as shown in Figure 6.2) will differ

slightly between a feedback controller design based on an observer-based controller structure

and one with an arbitrary dynamic compensator structure.

A direct feedforward input into the controller dynamics provides an "anticipation" factor

to the command inputs. An observer-based controller using the CLTR procedure possesses

an inherent feedforward controller structure. This is due primarily to the fact that the

observer has a direct input term from the control u(t). Let's examine in more detail the

influence of a command input in an observer-based controller design. The observer-based

controller is given by

5c_(t) = Acx_(t) + B_y_(t) + G2u(t)

]c(t) = Px_(t) + Jys(t)

where the control output is

= K_c(t) + Ucmd(t)

= KPx_(t) + KJy_(t) + U_md(t)

= Cczc(t) + Dcys(t) + Ucrna(t)

= C_x_(t) + D_[H_x(t) + D_u(t)] + Uo,,d(t)

= C_xc(t) + D_H_x(t) + (I + D_D_u)u_,_d(t).
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Figure 6.2: Closed-Loop System with a Feedback/Feedforward Controller

where we deine Cc = KP and Dc = KJ. For smplieity, we assume DcDs_, = 0. The

combined closed-loop dynamics and command ouput equations are given by

e(t) ]ec(t) =
y_d(t)

(F + GDcHs) GCc G

[ Bc(I + Ds_,Dc) ] Ac + BcD_Cc+G2Dc Hs +G2Cc BcDsu + G2Dcmd

(Ccmd + DcmdDcHs) DcmdCc Dcmd

Ix1Xc

Ucmd

(6.5)

In steady state, we have

x_s]XC8 $

Ucmd

(F + GDcH_) GCc G ] -1

[ Bc(I + D_,Dc) I Ac + BcDs_,Cc ]+G2Dc Hs +G2Cc BcDs_ + G2Dcmd

(Cored + DcmdDcHs) DcmdCc Dcrnd

0

0

Yref
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or

L]M =

N

(F + av_g_)
[B_(I + D_,D_) + G2D_]H_

(Ccmd+ DcmdDcHs)
c ]-i[o1Ac + BcDs_,C¢ + G2Cc B¢Ds_ + G2Dc,u_ 0

D_C_ D_,d I

We have Ucmd(t) = Nyref(t) or Kf: = N. Within the context of Figure 6.2, it is straight-

forward to see that Gc = G2Kff.
Like the state-feedback case, some simplification is possible if one considers problems

with integral control

[ x(t) F 0 + 0 ]u(t)"

Note that the control is given by u(t) = Cox,(t) + D_ys(t) + D_xI(t). This would result in

a closed-loop system of the form

r 2(t) ]
, L c(t)]

2 (t) + y_e:(t)

G G G

[Ccmd 01 0 Dcmd

[Ccmd 0] 0 Dcmd

where

[ F 0 ]Fez = B_(I + Ds_,D_)H_ Ac + BcD_Cc

[x(t)xc(t) ]

x'(t)
u_(t)

As in equation (6.4) for the state feedback case, the above form allows more than one

solution to the command feedforward Ucmd = K:$yre:, with K H = 0 often being used. As
before, only the short-term response is governed by this feedforward.

6.3.3 A Feedforward Controller with Non-Observer-Based Controllers

We can now proceed to the design of the feedforward controller for an arbitrary feedback

compensator of the form,
2_(t) = Acxc(t) + B_ys(t)

u(t) = Cox,(t) + D_y_(t)

The overall closed-loop structure is exactly as shown in Figure 6.2. Because there is no pre-

set distribution from the control Uc_d to the controller, determination of the feedforward

gains K H and Gc will have more degrees of freedom due to the nominal independence of
the two matrices.

We will cover three common approaches for designing the feedforward gain matrices K H
and Go. In the most general case, one simultaneously creates both matrices. We first write

state and output equations for the overall closed-loop system

2(t) ] [ (F+GDcH_) GCc G
2c(t) = Bc(I + Ds,_Dc)Hs (Ac + BcDsuCc) BeDs,,

Ycmd(t) (Ccmd+ DcmdDcHs) DcmdCc D_,t
_(t)

o _(t)I
o u_._(t)

v_,_(t)
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where Vcmd(t) = Gcyref(t) and we again assume DcDsu = 0. The above system is not

square, with more degrees of freedom than equations. Thus, one can solve the above using

a singular value decomposition on the system matrix

UFEFV T =

(F + GDcHs) GC_ G 0

B¢(I + Ds_D¢)Hs (Ac + BcDs_C_) BcDsu I

(Cond + Dc,ndD_Hs) Dc_Cc Dcmd 0

by constructing a pseudoinverse. The form of the pseudoinverse is VFGtF UT, where ErR is

generated by transposing the singular value matrix EF and replacing each nonzero singular

value with its reciprocal. Applying this to the steady-state response,

X88

Xcss

_tcmd

Vcrnd

[0]= v r+v o
I

Yref =

L

M

KH
G¢

Yre f °

The other two methods depend on pre_electing either of the matrices Kff or Gc. In

direct optimization of a controller, one often has the commanded outputs coinciding with

several of the sensed outputs, in which case it would be reasonable to make -G¢ equal to

selected columns from Bc. The overall system becomes

x(t)
z¢(t) - Gyver(t)

y_.z(t)

(F + GDcHs)

Bc(I + Ds_,D¢)Hs

(Ccmd+ DcmdDcHs)

GG O
(A¢ + BcDs_Cc) B_D_,,

D_Cc D_._d

x(t)
z_(t)

u_._(t)

or

M = B¢(I + D_De)Hs (Ac + BeDroCk) BeDs,, -

Klf (Ccmd + Dc_dDcHs) DcmdCc Dcmd

The pre-selection of KII happens in the context of CLTR. Since one is trying to recover

state-feedback characteristics, the steady-state controller response should be like that from

the state-feedback gains. Therefore it is appropriate to use the Klf from state-feedback,
with the remaining feedforward gain matrix Gc derived from the system

'2(t) - Kffy,._f(t)
_¢(t)

(F + GDcHs) GG G
B¢(I + D_Dc)Hs (A¢ + BcD_,C_) B_Ds=

(Ccmd+ Dells) Do_dCc D_._d

z(t)
_:(t)

v_,_(t)

or, in solving this (usually) nonsquare system for the steady_state response,

UFF, FV T =

IL]M =

G¢

(F + GDcHs)

B_(I + D_D¢)II_

(Ccmd + DcmaDcHs)

vFGv; o
I

GG C

(A_ + B_D_C_) BcD_,

D_,.,_C¢ Dc._

with EtF as previously defined.
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6.4 Concluding Remarks

In output feedback design, consideration of closed-loop stability and disturbance rejection

is done through careful definition of the input model. Under closed-loop transfer recovery,

these design issues are first addressed under the setting of state feedback design. Many

tradeoffs can be explored quickly using a state-feedback design, expecially when compared

to the long turnaround associated with the direct optimization of an output-feedback con-

troller.

Direct optimization of an output-feedback controller may not include determination of

command feedforward gains. Several useful approaches are given to compute feedforward

gains for an output-feedback controller optimized using the CLTR approach.

74



Chapter 7

Control Design for a

High-Performance Rotorcraft via
CLTR

7.1 Introduction

High-performance rotorcraft controller design is characterized by having to compensate

for both the longitudinal and lateral dynamics in a single controller. Rather than having

these modes largely decoupled in the natural state, one often needs to incorporate mode

decoupling as a part of the controller design, especially when the system model includes

high-frequency dynamics from the rotor flap and lag states. In addition to the usual design

considerations of stability augmentation, a high-performance rotorcraft such as the UH-60

would also require good bandwidth and decoupling in the heave, yaw rate, pitch, and roll

command responses.

The initial design step in CLTR is to formulate and synthesize a state-feedback controller

that addresses all the design specifications. The synthesis consists of selecting appropriate

design weights in the usual LQ performance index. For the UH-60 rotorcraft we construct

an integral control, and incorporate a desired set of command input models. With integral

control on all four important quantities--pitch, roll, yaw rate, and heave rate, we achieve

the desired attitude and rate control of the respective output command variables as specified
in ADS-33C for a rotorcraft.

A series of output-feedback designs are then developed from this state-feedback de-

sign using the procedure of Closed-Loop Transfer Recovery (CLTR). Initially, a Luenberger

observer-based controller is designed by minimizing the difference between its closed loop

response and the target closed-loop transfer function achieved with the state-feedback con-

troller. The design minimization problem can be solved analytically through the solution of

an algebraic Riccati equation. Note that in the recovery design process, we no longer need

to iterate on the design performance index. With varying degrees of success in maintain-

ing satisfactory closed-loop performance and robustness, other output-feedback designs are

then derived from this controller using model reduction techniques. A numerical procedure

is also used to design a CLTR controller following the problem description in Section 7.11.

The controller is synthesized using one of these reduced-order designs as a starting point.

On the other hand, one can also synthesize a reduced-order controller directly using the

technique described in Chapter 2. Conveniently, one of the reduced-order designs devel-
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oped from the Luenberger observer-based controller can be used as a starting point in the

direct optimization. The resulting optimized design will be compared to the CLTR-based
controllers.

Design performance and robustness are evaluated based on the specifications defined in

ADS-33C for a rotorcraft.

7.2 The UH-60 Model

The UH-60 rotorcraft model considered in this study is derived from a nonlinear simulation

model linearized about two flight conditions: hover (nominal with 1-knot forward velocity)

and a 15-knot forward velocity condition. In both cases the gross weight is set at 16,800 lbs,

the rotor speed at 27 rad/s, and the air density at 0.002030 slug/cubic foot. The linearized

open-loop model is of 31 st order. A listing of the rotorcraft states is given in Table 7.1.

Table 7.1:UH-60 Rotorcraft States

p, q, r Body-axis attitude rates (deg/s)

u, v, w Body-axis velocities (ft/s)

0z, 0y, 0z Euler angles (deg) from terrestrial to

rotorcraft axes (pitch, roll, yaw)

x, y, z Inertial positions (ft)

_0, _D, Rotor flapping rates (deg/s)

¢0, CD, Rotor lead-lag rates (deg/s)

_0, _0, Rotor flapping angles (deg)

 Is,
_0, _D, Rotor lead-lagangles(deg)

6c,
A0, Als, Inflow velocities (1/sec) normalized

Alc by the rotor radius (26.83ft)

The open-loop linear models in both the hover and 15-knot forward flight conditions

are mildly unstable. The unstable poles represent a phugoid-like response in the front/side

velocity coupled with the pitch and roll responses. In addition, there are modes that are at

or near the origin corresponding either to a pure integration (for instance, the yaw variable

derived from yaw rate) and to a lightly damped motion in the roll axis. Sensor outputs of

the model consist of the body angular rates p, q, and r, the body velocities u, v, and w, the

attitude angles roll ¢, pitch 0, and yaw ¢, and the inertial positions x, y, and z.

In both flight conditions, the linear models have a pair of defective degenerate eigenvalues

at the origin. In forward flight, the yaw angle couples into the lateral Ylat displacement by

way of forward velocity with _tat(t) -- Vo¢(t) included as part of the system model equations.

(This is also true in the hover flight condition where there is a small, but not insignificant

forward velocity). These degeneracies within the system matrix and the tendency to produce

overlapping modes within the CLTR design procedure are major concerns in the numerical

solution of the design optimization. These concerns are addressed directly with the robust

algorithm presented in Section 3.3.
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The four control actuatorinputs are 50, 5s, 5c, and 5TR denoting the collective (main

rotor), the main rotor sine, the main rotor cosine, and the tail rotor pitch inputs respectively.

Using these controls, one should be able to achieve a decoupled set of ideal command

responses in heave, roll, pitch, and yaw rate.

7.3 Actuator and Sensor Delays

Only the actuator delays and the sensor delays for the command variables 0, ¢, r and _,

(Figure 7.2) are present in the state-feedback design. Both the actuator and all the sensor

delays are accounted for in the output-feedback designs. These were set uniformly to 60 ms.

Because of the sensor delays, the system has a set of nonminimum-phase zeros and it is

impossible to recover state-feedback design properties with an output-feedback design.

This delay is modeled as a first-order Pade approximation model. In the Laplace domain,

it is given by
1 Ts

2

T, lay(8) -- 1+

or, in the time domain,

= -Tx(t)+yi_(t)

4

= -

A higher-order Pade approximation model for the time-delay could have been used; however,

this would lead to a prohibitive number of delay states due to the large number of sensor
outputs (a total of 12) in this design problem.

7.4 ADS-33C Requirements and the Ideal Response Model

Performance of a controller design can be evaluated based on a subset of tests defined in

the document ADS-33C [35]. This subset of requirements is applicable to rotocraft models

linearized about specific flight conditions, and falls into the categories of bandwidth, attitude

quickness, cross coupling, and gust response.

Desired bandwidth properties of the closed-loop command responses are used to define

low-order idealized response models for each of the command variables. The state-feedback

design is derived from the minimization of the error between the actual rotorcraft responses

and the ideal model responses. Such a procedure provides designers a systematic way of

attaining adequate response in the respective channels without imposing excessively high

bandwidth upon the others. Also, similar to CLTR, the need to adjust the criterion weights

to optimize the design is not as severe as it would be with a direct design approach. The

ideal model responses are associated with pitch, roll, yaw rate, and heave commands, and

form the dynamics of the feedforward controller in the final design.

Bandwidth requirements for both the forward and the hover flight conditions are similar,

hence one feedforward command model is used for both conditions--with the exception that

for turn coordination, a command for yaw rate has to be included with any roll command

in forward flight. Otherwise, all commands are completely decoupled in these ideal models.

Based on the ADS-33C bandwidth requirements in Figure 1(3.3) of [35], pitch, roll,

and yaw rate responses are idealized as critically damped second-order responses, while
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heave motion is patterned after a first-order response (refer to Table 4(3.3) in the ADS-33C

document). A first-order approximation to a time delay of 0.1 s is included in each of the 4

channels. As a result, the ideal model has a total of 11 states. The natural frequency of the

pitch response is 3 rad/s, that of the roll response is 5 rad/s, and the yaw rate response has a

bandwidth of 4 rad/s. Damping of the critically damped second-order responses is perturbed

slightly away from 1 to avoid degenerate eigenvalues in these uncontrollable modes. These

modes can cause numerical difficulties in the eigenvector decomposition method of the LQ

synthesis.

According to Figure 2(3.3) of ADS-33C, the command bandwidth is determined from the

frequency response of the transfer function between the command input and the commanded

output where the phase crosses 135 degrees. Targeted command bandwidths are set at

4.33 rad/s for pitch response, 6.08 rad/s for roll response, and 5.27 rad/s for yaw rate

response. Associated with each is a phase delay of 0.06s for pitch, 0.055s for roll, and 0.057s

for yaw rate. While these are all Level I characteristics, the bandwidth is not excessively

high. The heave response is set to a time constant of 3 s and a delay of 0.1s, which correspond
to moderate Level I characteristics. These ideal responses are shown in Figure 7.6.

Simplicity of the control synthesis based on ideal model matching allows designers to

address the bandwidth problem as well as other design considerations. One area of con-

cern is the attitude quickness. It is defined as the ratio between the peak rate and the

angular change in an attitude step command, and is an evaluation criterion quantified in

Figure 4(3.3) of the requirements [35]. These requirements are subject to interpretation

when testing with a linear model. Because the criterion curve for ratio of maximum rate to

attitude change is strongly dependent on the attitude command level, the most stringent

case (at a 5° commanded change) is considered. To satisfy these criteria, ideal models with

a pitch ratio of 1.1, and one with a roll ratio of 1.8 have been selected that correspond to

average Level II responses in the target acquisition and tracking mode. To further improve

these responses, one would have to increase the bandwidth further, and this would place

a too stringent requirement upon any state or output-feedback designs in terms of control

bandwidth. It is further anticipated that these ratios would be accentuated in a more re-

alistic nonlinear simulation test, hence they are kept unchanged at the selected Level II

characteristics.

In the ADS-33C requirements described in items (3.3.9.2) and (3.4.4.2), pitch to roll cross

coupling (and vice versa) is defined as the peak response in one attitude variable due to a step
command in the other. Additional cross coupling tests in forward flight involve measuring

the peak pitch response normalized by vertical acceleration in a step heave command (item

3.4.4.1.1), and the peak sideslip to a l°-step command in roll (item 3.4.6.2). Additional

hover condition tests examine the peak response and envelope of oscillatory response of yaw

rate from a step command in heave (item 3.3.9.1).

Roll damping in forward flight is tested by measuring the envelope of the oscillatory roll

response due to the roll command (item 3.4.6.1). While neither pitch nor yaw damping are

directly specified, the damping constants for the pitch, roll, and yaw rate responses are all
set to near 1 in the ideal models.

Additional hover condition requirements involve yaw and yaw rate responses to gusts

(item 3.3.7.1). Tests for yaw responses to gusts are somewhat involved. In one test, one

applies a steady 25-knot headwind, followed by a sudden 10-knot side gust. In the other

test, the wind inputs are applied in the reverse order: a steady 25-knot side wind and then

a sudden 10-knot head gust.
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7.5 State Feedback Designs

With the idealized output responses defined in the ideal models, the design procedure for

the state-feedback designs follows somewhat the concept of loop transfer recovery_n the

commanded responses. No reasonable ideal model appears to exist for the gust responses.

By minimizing the difference in the commanded responses, the use of a pole attractor

formulation for desired closed-loop stability is no longer needed. A further advantage is the

anticipation factor introduced in the synthesis through the inclusion of the actuator delay

in the design. A block diagram of the design set-up is given in Figure 7.1.
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Figure 7.1: Synthesis Model for Full-State Design with Integral Controls

From our previous work [34], we recognize early on the need for integral control on

the commanded error quantities. The purpose is to provide steady-state command track-

ing to step changes and incorporate design robustness to constant disturbances. Putting

penalty weights on the integral of the commanded errors ensure that the integral modes

are detectable from the LQ design cost function. The penalty weighting matrices Q and R

differ significantly between designs for the hover condition and forward flight. The control

penalty is evenly divided among the 4 controls with R = I (identity matrix). The criterion

variables consist of A0 (pitch error), A¢ (roll error), Ar (yaw rate error), A_. (heave error),

and integral of the errors fAO, fA¢, fAr, and fA_,. In the hover condition, a criterion

weight of 400 is used on all the variables with Q -- 400I. In forward flight, however, a

trade-off between performance and stability of an oscillatory mode around 18.5 rad/s is

needed. This mode is excited primarily by the roll command. Sideslip control is of course a

problem in forward flight, but an attempt to control it via a penalty on the sideways accel-

eration _)is not fruitful. Design effort involved in the selection of the penalty weights for the

forward flight condition is considerably greater than that for the hover condition. The final

weighting factors are given in Table 7.2. Robustness analysis in terms of single-loop gain

and phase margins is also performed for both the control and sensor loops. Performance is
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Table 7.2: Design Weights on the Criterion Variables in the LQ Synthesis

Criterion Hover ] ForwardVariable Flight

fAO 400 500

yA¢ 400 500
fAr 400 80

fA_ 400 100
A0 400 300

A¢ 400 400

Ar 400 400

A2 400 500

satisfactory based on the ADS-33C requirements. Results are shown in Tables 7.7 to 7.10,

and Figures 7.7, 7.8, 7.9, and 7.10.

Since there is no penalty weighting on _, x, y, or z, and that these states are associated

with poles at the origin, they will not be detectable in the LQ synthesis. To avoid numerical

difficulties in the solution of algebraic Riccati equation, these states have been removed

from the state-feedback synthesis model. However, in the output-feedback designs, these

additional sensor outputs would provide improved observability on the integrals of 4, u,

v, and w. This information is especially helpful in steady-state command following for the
variables r and 2.

SYNTHESIS MODEL

UH-60 Plant

f Adt

X

Figure 7.2: Synthesis Model for Pull-State Design with Sensor Delays Added

With a state-feedback control structure as shown in Figure 7.1, all the state information

is assumed available, uncorrupted by noises and not subject to sensor delay. However, for
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propercontrolanticipation,sensordelaysaretakenintoaccountin thosesensoroutputsthat
areusedto form theintegralerrors.Hence,the state-feedbackgainsusedin thesubsequent
CLTR observer-based designs are derived from the system shown in Figure 7.2. Performance

of the resulting closed-loop state-feedback system defines the baseline results for comparison

with subsequent output-feedback designs from loop transfer recovery or direct optimization.

The integrators in the integral control of the command errors are clearly more a part of

the feeback controller than of the plant model, and the state-feedback gains on the integral

states can be retained in the reduced-order observer-based designs.

7.6 Closed-Loop Transfer Recovery

Closed-loop transfer recovery (CLTR) offers a useful framework for the synthesis of output-

feedback controllers starting from a satisfactory state-feedback control laws. Analysis of

closed-loop recoverability using the Special Coordinate Basis (SCB) transformation reveals

that the system between the command/disturbance inputs and the measurement outputs

has 23 internal states, 19 output states, 8 stable invariant zeros (at @33.33 rad/s), and 12

infinite zeros of order 1. Note that the system used in this analysis includes the sensor

delay in the outputs to the integral control. In this SCB analysis, we include independent

disturbance inputs to all the system states, with the exception of the output delay states

(for pitch, roll, yaw rate, and heave), and the command error integral states. Again note

that the states ¢, x, y, and z are not involved in the LQ synthesis and hence are excluded

from the analysis.

Exact or asymptotic recovery is in general not possible. The existence of invariant zeros

in the right half-plane due to time delay in both the inputs and outputs poses a constraint on

the loop recoverability. However since these invariant zeros are far removed from the origin

and hence will contribute only slightly to the non-recoverable error. The major difficult for

loop recovery lies in the fact that the system is not left-invertible due to the presence of

multiple disturbances entering into the majority of the system states.

It should also be noted that a full-order observer-based design generally achieves less

overall recovery than a reduced-order (Luenberger) observer-based design since the latter

design has the inherent benefit of feedthrough terms from the direct feedback of the mea-

surement outputs.

7.7 Luenberger Design

From early experiences with similar rotorcraft designs, a Luenberger design tends to achieve

better recovery of the closed-loop LQ performance. With direct observation of the integral

states and the feedforward ideal model states, a Luenberger design is also more appropriate

than a full-order observer-based controller. Furthermore, due to the large model size, one

can make use of the sensor outputs to minimize the number of states that need to be included

in the dynamics of the reduced-order observer. This is conveniently done by replacing parts

of the system states with the noise-free measurement outputs.

Design of a Luenberger observer-based controller under the CLTR procedure is described
in Sections 5.5 and 5.6. In terms of an H2-norm minimization of the recovery error matrix,

one usually needs to solve a singular optimal control problem. Generally, a reduction in the

recovery error is accompanied by an increase in the magnitude of the observer gain matrix.

Due to the presence of only infinite zeros of order 1, the recoverable portion can be exactly
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recoveredby a reduced-orderLuenbergerobserver-basedcontroller. A simplediagramof
theCLTR designformulationcanbeseenin Figures7.3and 7.4.
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The overall results are satisfactory, with some degradation in command bandwidth and
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relativelyminor changesin performance(Tables7.13and 7.14).Robustnessalsoremains
acceptable(Tables7.7to 7.12).Somenoticeabledifferencesin thecommandresponsesare
seenin Figures7.7to 7.10.

Theoverallcontrollerdesignconsistsof a35th-orderLuenbergerobservercombinedwith
an l lth-order feedforwardcontroller,andan integralcontrollerof 4 th order. This compares

to the 47th-order rotocraft model, which includes a 31St-order model for the rotocraft dy-

namics, a 4th-order model for the actuator delay, and a 12th-order model for the sensor

output delay.

To describe more precisely the controller structure, let's designate the ideal model (i.e.,

feedforward controller) system as {Aide.l, Bid_l, Cid_l, Did_l}, and the state matrices of

the Luenberger design as

Alc

Bt_

Glc

Luenberger observer system matrix

Control input distribution matrix

Output distribution matrix (state to control)

Sensor to observer input distribution matrix
Sensor to control distribution matrix

Of particular interest are the Gzc and Ptc matrices. Note that the inputs to the controller

include not only the usual sensor outputs Ys from the plant, but the integral states xl

and the feedforward controller states x H as well. One can then partition the matrix Glc

into [G s _r (2FF]it, '-'h:, "-qc j where G[c = G FF = O. The same partitioning applies to the matrix

ao = IPi ," DEE]
q_, q_ ]. These matrices show up in the overall controller model as follows,

depending on whether it is described in
L

• an observer-like form:

AC

f A --Cide_t 0

0 Aideal 0

0 0 Ale

],

, Bc

DC

--Dideal CIs 0

Bideal 0 0

0 GlS_ Blc

0 .,c 0]
(7.1)

with inputs Ycmd, Ys, and u, or in

• an alternate non-observer form:

AC "_-

CC

f A --Cid_,_l

0 Aid_al

BtcP[c B, cPrc F

Pie PFcF C,c ],

0

0

Al_ + B_cClc

with no explicit input from the control u.

-- Dideal
, Bc = Bideal

0

CIs

0

(7.2)

Note that the term C1s distributes the sensor ouputs ¢, O, r, and 2 to the appropriate

integral states. So far, for the purpose of robustness analysis, the observer-based form has

been used. Proper selection of one form over the other would become important when we

proceed to the reduction of the controller order.
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7.8 Model Reduction on the Feedforward Controller

While the need to reduce the number of states in the 35th-order Luenberger observer design

is evident, one could also reduce the order of the feedforward controller as well. Usually one

tends to perform a reduction of the entire controller at once without regard to the internal

structures of the resulting linear time-invariant controller. However, to apply the method

of balanced truncation, one needs to partition out the integral states of the commanded

errors. Furthermore, the dynamics of the feedforward controller are only coupled in one

direction to the feedback portion of the controller, it will therefore be practical to do this

reduction as a separate process.

Finally, one needs to examine the question as to whether one should reduce the com-

ponents of the compensator in an observer-like form or in the alternate form. Putting the

controller into the latter form will add a dependency to the feedforward controller states,

as seen in the B pFF term within the Ac matrix of equation 7.2. This term representslc lc

the distribution into a portion of the controller related to the Luenberger observer design,

in the same place that GIFcF would have been. Output from this distribution would add

more degrees of freedom to the model reduction. Even though there are more inputs, the

observer-like form is actually simpler and therefore preferred.

Given a controller in observer-like form, the subsystem associated with the feedforward

controller dynamics has inputs wc = {0c, ¢c,¢_,_}, and produces as outputs the ideal

responses used in the feedforward commands wgF = {OFF,¢FF,_JFF, ]fFF}, along with

the feedforward control UFF. Hence, the resulting feedforward controller used for model

reduction is represented by the following state matrices

AFF : Aideal , BFF = Bided

[ 1 [CFF = PIFF ' DFF = 0 "

Remember that the output UFF is associated with the distribution matrix PF F. In the

mode] reduction, we seek the lowest model order that produces the closest input/output

characteristics for the given command inputs. The preferred technique is based on the

balanced truncation method. Looking at the Hankel singular values as listed in Table 7.3,

one could identify that a 7th-order feedforward controller (i.e., a reduction of 4 states)

appears satisfactory. The same conclusion applies to both flight conditions.

One problem with this reduction technique is that the static relation between y_,_ and

WEE in the resulting reduced-order feedforward controller is no longer unity. Usually curve

fitting is used to further improve the results of the truncation procedure. In this case, we

can make use of the additional degrees of freedom in the direct feedthrough term which is

not modified in the balanced truncation procedure. The curve fit is done using numerical

optimization. It is found that with white-noise inputs, the integral of the truncation error

must be penalized in order for the steady-state values of the reduced-order model to match

those of the original model. The error was reduced to less than a percent of its original

value, and the resulting feedforward controller matches its full-order counterpart well.

In the feedforward ideal model, only diagonal terms are considered in the command

input distribution matrix. In other words, there is no crossfeed from a pitch command to

the ideal roll response. For the command-to-control portion, a full feedthrough matrix is

allowed. The direct command-to-control submatrix n_d_ is contained in the Dc matrix ofu Plc
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Table7.3: HankelSingularValuesfor FeedforwardControllerModel

Hover 15knotForward
1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

13.4440

13.3388

12.7467

11.2347

2.5749

1.7669

1.5000

0.0654

0.0478

0.0438

0.0195

23.1376

13.6907

11.8742

6.9295

4.0842

1.5641

0.9651

0.1047

0.0476

0.0263

0.0202

the controller in observer-like form. Namely,

Dc[r)idealFF]: L*Plc Plc 0 .

In the alternate form we have the same matrix in De plus an additional nonzero submatrix

B ,_id_t within the controller matrix Be,lc t.] Plc

-- Dideal

Bc = Bideal
S nideal

lc _ Plc

CIS

0

+ B,cPi 

7.9 Balanced Truncation of Luenberger Observer

The observer part of the compensator has not only sensor inputs Ys, but also the control

inputs u as well. These control inputs could be eliminated by separately closing the loop

around the compensator, but this has two harmful side effects. Firstly, it makes impossible

to identify and separate out in the compensator portions that correspond to the feedforward

controller, the integral control, and the observer. Secondly, the open-loop compensator may

possess some unstable poles, making the balanced realization impossible. Thus, it is essential

to retain a separate input from the control u in what one would call an observer-like form

of the compensator.

The observer portion of the controller mode] has the following state model description,

where

u' = Coxo + Dou

Examining the Hankel singular values of such a system (Table 7.6), we see that the model

can possibly be reduced to a 25th-order controller without noticable change in performance.

Design analysis results confirm the fact that this truncated controller model performs

almost as well as the full-order observer-based controller design. In most areas of robustness,
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commandresponse,andADS-33Cdesignrequirementsthereducedorderdesignshowslittle
differencefrom the full-orderdesign.

Combinedwith the reduced-orderfeedforwardcontroller (7 states)and the integral
controller(4states),theoverallcontrolleris reducedto 36 th order.

Closer examination of the Hankel singular values reveals that further reduction in the

order of the observer part of the controller might be possible leading to a 14th-order ob-

server. Analysis of the controller with a 14th-order observer indicates that the design is not

satisfactory, although the resulting closed-loop system remains stable. In the next section,

this reduced-order observer will be redesigned using numerical optimization for improved

performance and robustness.

7.10 Reduction of Controller Order using Numerical Opti-

mization

Note that the feedforward controller order has been reduced separately, and the integral

gains are left unchanged, the remaining task in controller order reduction involves only the

observer portion of the controller. As such, only this portion of the controller is formulated

for optimization using the design tool SANDY.

The controller state matrix Ac matrix is allowed to have a tridiagonal structure which

was derived from model reduction of the Luenberger observer. All of the elements in the

matrix Ac identified by the asterisk are design variables in the optimization.

0 *

0 0

0 0

0 0

0 0
Ac= 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0

• 0 0 0 0 0 0 0 0 0 0 0

• • 0 0 0 0 0 0 0 0 0 0

• • • 0 0 0 0 0 0 0 0 0

0 * * * 0 0 0 0 0 0 0 0

0 0 * * * 0 0 0 0 0 0 0

0 0 0 * * * 0 0 0 0 0 0

0 0 0 0 • • * 0 0 0 0 0

0 0 0 0 0 * * * 0 0 0 0

0 0 0 0 0 0 * * * 0 0 0

0 0 0 0 0 0 0 * * * 0 0

0 0 0 0 0 0 0 0 * * * 0

0 0 0 0 0 0 0 0 0 * * *

0 0 0 0 0 0 0 0 0 0 * *

Furthermore, elements of the remaining controller

choosen as design parameters.

state matrices Be, C_, and Dc are also

Bitgc -_ (12 sensor inputs) (4 control inputs)

Cc _- (4controloutputs)[Clc]

Dc = (4 control outputs) [

F

[ (12 sensor inputs) 0 ](4 control inputs)

While the 14th-order observer-based controller arrived at by balanced truncation is inad-

equate, it can however be used as a starting point from which one can recover the full-order
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controllerresponsesthroughnumericaloptimization.Wedefinethedesignobjectivefunc-
tion in the designalgorithmSANDYto be the H2-norm of the error in transfer function

between the original Luenberger observer and the above specified 14th-order design. As in

the optimization of the feedforward controller, it would be desireable to incorporate more

design degrees of freedom into the lower-order observer structure without increasing the

overall controller order. However, because the optimization already involves 368 variables,

introducing additional degrees of freedom will have to be done carefully. One could for

example allow a direct feedthrough term from the control input u to itself, but it is found

to be unnecessary for a well-posed system. One could also have introduced a direct link

from the dynamics of the feedforward controller and the integral control to the observer

dynamics. However, this path has been partially fulfilled by the control input into the
observer and the formulation would be redundant.

In consideration of the alternate formulation to the observer-like form, it is found that

closing the control loop about the compensator is not beneficial. While it could be argued

that eliminating the explicit control input u will reduce the parameter count, a closer

examination indicates that there is no significant advantage.

Simultaneous optimization of parameters in both the feedforward controller and the

Luenberger observer controller is more costly in terms of memory and computational time.

Optimization of just the observer-based controller alone involves 368 parameters. Because
the feedforward controller matches its full-order counterpart well, and because the results

from separate optimization of the observer-based controller are satisfactory, the procedure

involving simultaneous optimization is therefore not needed.

The resulting design optimization improves significantly the controller performance.

While the performance is close to the other output-feedback controllers (i.e., small rela-

tive to the difference between the other output-feedback controllers and the state feedback

controller), its robustness while still adequate is somewhat degraded.

7.11 Numerical CLTR

In general, one can also approach the closed-loop transfer recovery via direct numerical

optimization. It should be emphasized that numerical CLTR is different than the procedure
described in Section 7.10 related to controller order reduction. Here, one can theoretically

start from any preferred size of the controller--the order selected is an arbitrary choice.

The design objective is to determine the controller parameters by matching the closed-

loop responses of the resulting output-feedback controller to those achieved under the state

feedback for a given set of disturbance/command inputs.

In the design optimization, the 25th-order controller (derived from the 14th-order ob-

server given in the previous section) provides a convenient starting place in this case due to

its size, and its potential for further improvement.

Initially, the input excitations are bandwidth-limited to 25 rad/s and fed into both the

command and gust input channels. The resulting controller design exhibits poor robustness

in the control paths. Additional noises bandwith-limited to 150 rad/s are then introduced

into the control actuators (the high-bandwidth value is choosen to be above all the system

modes). For the hover case, the intensity of the actuator noises is set at 0.666 compared

to a unit intensity in all other input excitations. However, the intensity is increased to 1.0

for the forward flight case (The results are found to be relatively insensitive to the choosen

value).
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Included in the performanceindex are the errors in the commandresponsesin roll,
pitch, yawrate, heave,and their integrals.For robustness,it is necessaryto alsoinclude
the differencein controlresponsesin the performanceindex. Severaldesigniterationsare

Table7.4: ObjectiveWeightsin NumericalCLTR

Criterion
Variable

Roll ResidualA¢
Pitch ResidualA0

YawRateResidualAr
HeaveResidualA2

f A¢

f A_

far

f A2
Collective Residual AS0

Main Rotor Sine Residual ASs

Main Rotor Cosine Residual ASc

Tail Rotor Residual ASTR

I Hover I ForwardFlight

400 300

400 400

400 400

800 500

700 500

400 500

400 80

100 100

1 1

1 1

1 1

1 1

usually needed in the set up and selection of the weightings in this strongly non-recoverable

case. Table 7.4 lists the weightings used--they are similar to, and based on the state-

feedback performance objective. The optimization results show that no further improvement

can be made to the design obtained in Section 7.10.

7.12 Direct Optimization

In this section ,we examine design results obtained from the direct optimization of an

objective function instead of applying the CLTR procedure. Here, the controller is designed

by minimizing the difference between the ideal command responses and the actual responses

along with terms involving control penalty. Initial values of the criterion weights are taken

from the respective Q and R matrices defined in the LQ synthesis. The controller structure

is chosen to be the same as that in the last section to further explore the potential for

optimization beyond the current designs having the same order and structure. The controller

order is found to be reasonably small for design implementation. The numerical CLTR

results of Section 7.10 are used to provide initial design guess in the direct optimization.

As with the numerical CLTR, the system is excited by unit amplitude command and gust

inputs as well as by fictitious actuator noises. The command and gust inputs are modelled

as outputs of first-order filters with a bandwidth of 25 rad/s excited by white noises of

unit intensity. The actuator noises are derived from first-order filters with a bandwidth of

150 rad/s. While the actuator noises are kept at unit amplitude in the forward flight case,

they are adjusted somewhat in the hover case: 0.2 for the collective control, and 0.5666 for
the other control actuators.

In the hover case, considerable improvement can be achieved. The weighting matrices

are initially set to the values defined in the LQ synthesis, and undergo some adjustment

through several design iterations. The final values can be seen in Table 7.5. A slight change
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Figure 7.5: Controller Design Structure in Direct Optimization

Table 7.5: Objective Weights in Direct Optimization

Design [ Hover ! Forward

Variable [ Flight

Roll Residual A¢ 500 300
Pitch Residual A0 500 400

Yaw Rate Residual Ar 400 400

Heave Residual A_ 800 500

$A¢ 750 5oo
f A0 650 500

f Ar 400 80 --

$ A_ 300 100
Collective Control di0 1 1

Main Rotor Sine Control _. 1 1

Main Rotor Cosine Control dic 1 1

Tail Rotor Control _TR 1 1
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in theforwardflightdesignis found,but thedifferenceissoslightthat thereisnonoticeable
changesin the designresults. It wouldbedifficult to characterizethe differencein results
for the forwardflight, exceptthat directoptimizationmayoffera slightedgein the overall
robustness.Most of the improvementin the hoverdesignis in the roll bandwidth(see
Table7.7). Theimprovementis gainedat theexpenseof sensorrobustness(Table7.13).

7.13 Conclusions

Applicability of the CLTR technique has been demonstrated on the control of the UH-60

rotorcraft for two flight conditions. The results are presented for the hover and 15-knot

forward flight conditions. They are found to be satisfactory in terms of ADS-33C require-

ments. It turns out that the feedforward controller dynamics at the two flight conditions are

nearly the same, but a low-order set of ideal response dynamics should be feasible for any

flight condition. With the given ideal model dynamics, a reasonable state-feedback design
can be synthesized.

Not all the requirements in ADS-33C can be tested in the regime of linear models.

Generally the controllers are found to meet the requirements for Level I qualities, except, as

noted, for pitch and roll rate responses. The 14th-order Luenberger observer-based controller

for hover does not meet Level I characteristics for roll bandwidth, and the result has been

improved via direct optimization. This is not indicative of the limitations in the CLTR

design procedure. It is believed that an improved state-feedback design for the hover case
would have led to better output-feedback controllers via CLTR.

The proposed design technique based on CLTR should be applicable to other flight

conditions. Evaluation of the CLTR design process for the hover and the forward (15 knot)

flight conditions shows that most of the design tradeoffs occur in the synthesis of the state-

feedback design. Once the problems of stability, performance and robustness have been

solved in the LQ synthesis, recovery of these closed-loop properties becomes a much more

routine process under CLTR. Although the procedure of numerical CLTR requires the

tailoring of objective weighting matrices for an optimum design at each flight condition, an

accurate selection of the weighting matrices is not significant to the overall results.

The order of the overall synthesis model in a CLTR design using numerical optimization

is nearly prohibitive. Some shortcuts are performed to reduce the size of the overall CLTR

system. A reduced-order (7 state) feedforward controller is used to drive both the state

feedback (i.e., target) closed-loop model and the nominal open-loop model. The state-

feedback system with 4 sensor output delay states is 35 th order, while the open-loop plant

with a full set of sensor output delays is 47 th order. With integral control (4 states) for both

state- and output-feedback, and a 14th-order observer, the overall dynamics quickly add up

to a synthesis model of 111 states. An optimization on such a system takes substantial

computing time, and is prone to have defective eigenvalues throughout the optimization

run. The design results rely heavily on the reliable algorithm developed in Chapter 3.

The procedure in direct optimization design is facilitated considerably by the results from

CLTR. The initial choice of objective weights can be developed from the LQ synthesis, and

the initial controller can be taken from the CLTR design. In fact, the choice of controller

order would not have been possible without the CLTR design followed by a mode] reduction

procedure. One can conclude that design based on direct optimization would have entailed a

much more tedious process if not for the useful insights developed from the CLTR procedure.

The CLTR process becomes truly an integral part of the direct optimization design.
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Table 7.6: Hankel Singular Values, Luenberger Observer

1:

2:

3:

4:
5:

6:

7:
8:

9:

10:

11:
12:

13:

14:

15:

16:

17:

18:
19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:
30:

31:

32:

33:

34:
35:

Hover

19.6542

16.1352

14.3219

11.1515

15knot Forward

22.3400

18.2805
15.3796

10.5320
9.9974

6.5465

4.7171

3.4355

3.2165

2.7132

2.1561

1.8829
1.6118

1.1177

0.5927

0.4878

0.3356

9.0218

7.0539

6.7871
4.8661

3.3467

3.2328
2.4144

1.8143

1.2724

0.7836

0.6148

0.4694

0.3540
0.2910 0.2724

0.2061 0.1688

0.1795 0.1533

0.1721 0.1211

0.1270 0.1111

0.1071 0.0884

0.0967 0.0551

0.0190 0.0495

0.0003 0.0030

0.0002 0.0025

0.0000 0.0005

0.0000 0.0000

02000 0.0000

0.0000 0.0000

0.0000 0.0000
0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

Table 7.7: Single-Loop Sensor Robustness Properties, Hover

Design
Full State

+Integrals

Luenberger
Observer

25th Order

Luenberger
14th Order

Luenberger

Roll

Gain Phase

6.13db, 52.36
<-40db

+5.64db, 49.92
<-40db

+6.43db, 49.93
<-40db

Pitch

+3.98db, 45.00
-12.41db

+4103db, 34.95

Gain Phase

8.84db, 48.85
<-40db

+6.88db, 49.75
<-40db

+6.60db, 49.81
<-40db

Heave

Gain Phase

+7.15db, 58.48
<-40db

+5.01db, 54.80
<-40db

+5.39db, 50.17
<-40db

Yaw Rate"

Gain Phase

+5.97db, 57.39
<-40db

+6.31db, 44.75
-16.04db

+6.73db, 44.77
<-40db

+5.60db, 46.68
<-40db

+5.44db, 52.98
<-40db

+5.24db,
-13.78db

43.27

14th Order +5.98db, 43.71 +6.29db, 58.93 +5.07db, 41.95
Direct Opt. -6.89db <-40db -28.96db -29.20db
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Table7.8: Single-Loop Actuator Robustness Properties, Hover

Design
Full State

+Integrals

Luenberger
Observer

25th Order

Luenberger
14th Order

Luenberger
14th Order

Direct Opt.

Collective

Gain Phase

>40db, 65.00

<-40db

>40db, 65.00
<-40db

>40db, 65.00
<-40db

>40db, 48.40
<-40db

>40db, 61.28
<-40db

Sine

Gain Phase

>40db, 80.63
<-40db

>40db, 84.59
<-40db

>40db, 80.63
<-40db

>40db, 74.97
<-40db

>40db, 57.46
<-40db

Cosine

Gain Phase

>40db, 70.80
<-40db

>40db, 73.97
<-40db

>40db, 70.79
<-40db

>40db, 59.89
<-40db

>40db, 67.38
<-40db

Tail Rotor

Gain Phase

>+40db, 91.55
<-40db

>+40db, 91.55
<-40db

>+40db, 91.55
<-40db

>+40db, 97.21
<-40db

>+40db, 103.82
<-40db

Table 7.9: Multiloop Actuator Robustness Properties, Hover

Independent

Design +G.M. -G.M. P.M. a_(I+G(s)) a_(I+G-l(s))

Full State +o0 db, -10db 60 ° 0.992 0.693

Luenberger Observer +c_db, -10db 60 °

+c_db, -10db 60 °

0.992

0.992

0.693

0.69325th Order Luenberger

14th Order Luenberger 412, -7 40 0.715 0.571

14th Order Direct Opt 412, -7 40 0.700 0.607

Table 7.10: Single-Loop Sensor Robustness Properties, Forward Flight

Pitch HeaveRoll

GainDesign Phase

Full State 6.86db, 49.89

+Integrals <-40db

Luenberger +5.49db, 49.70
Observer <-40db

25th Order +5.38db, 49.36

Luenberger <-40db
44.7014th Order

Luenberger
14th Order

Direct Opt.

+5.41db,
<-40db

+5.41db, 44.70
<-40db

Gmn Phase GMn Phase Gain

8.48db, 47.70 +6.16db, 61.03 +7.24db, 61.20
<-40db <-40db <-40db

+6.82db, 44.99 +6.89db, 61.03 +4.39db, 44.94
<-40db <-40db <-40db

+6.84db, 44.99 +6.89db, 64.80 +5.29db, 43.91
<-40db <-40db <-40db

42.01+6.56db, 43.88
-28.61db

+6.85db, 43.88
-28.61db

+6.48db, 54.95
<-40db

+6.48db, 54.95
<-40db

+5.43db,
<-40db

Yaw Rate

Phase

+4.61db, 42.01
<-40db
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Table7.11:SingleLoop ActuatorRobustnessProperties,ForwardFlight

Collective Sine Cosine Tail Rotor

Design Gain Phase Gain Phase Gain Phase Gain Phase

Full State >40db, 64.29 >40db, 74.95 >40db, 74.90 >+40db, 90.34

+Integrals <-40db <-40db <-40db <-40db

Luenberger >40db, 64.95 >40db, 74.77 >40db, 75.00 >+40db, 90.34
Observer <-40db <-40db <-40db <-40db

25th Order >40db, 64.28 >40db, 74.84 >40db, 75.00 >+40db, 90.34

Luenberger <-40db <-40db <-40db <-40db

14th Order >40db, 45.93 >40db, 54.34 >40db, 57.23 >+40db, 90.44

Luenberger <-40db <-40db <-40db <-40db

14th Order >40db, 45.93 >40db, 54.94 >40db, 59.51 >+40db, 90.44

Direct Opt. <-40db <-40db <-40db <-40db

Table 7.12: Multiloop Actuator Robustness Properties, Forward Flight

Independent

Design +G.M. -G.M.P.M. a_(I+G(s)) a_(l+G-l(s))

Full State +oo db, -8.5db 60 ° 1.000 0.632

Luenberger Observer +oo db, -8.5db 60 ° 1.000 0.632

25th Order Luenberger +oo db, -8.5db 60 ° 1.000 0.632

14th Order Luenberger +12, -9 40 0.710 0.660

14th Order Direct Opt +12, -9 40 0.709 0.659
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Table 7.13: Design Evaluation, Hover

Test Result ADS-33C Full State Luenberger 25th Order 14th Order 14th Order

Target Feedback Ob6erver Luenberger Luenberger Direct Opt.

Pitch Bandwidth Fig la,c 3.344 2.642 2.648 2.699 2.510

Phase Delay (3.3) 0.147 0.187 0.186 0.184 0.182

Roll Bandwidth Fig lb,d ' '5.33:] ...... 3.626 3.649 2.819 3.485

Phase Delay (3.3) 0.080 0.120 0.120 0.086 0.104

Yaw Bandwidth

Rate Phase DelaY .
Heave Time Constant

Delay (s)

F_ 5
(.3.3) ....
< 5.0

< 0.2

5.311

0.061

2.981

0.114

4.112

0.104

2.872

0.169

4.116

0.105

2.856

0.173

4.240

0.102

2.816

0.171

4.130

0.113

2.876

0.195

Pitch Rate from 1 ° step > L6 1.160 1.177 1.175 1.234 1.220

from Roll < 0.25 0.012 0.010 0.010 0.016 0.007

Roll Rate from 1 ° step > 2.4 1.813 1.832 1.829 1.914 2.020
from Pitch < 0.25 0.009 0.011 0.011 0.022 0.009

from side gust < 0.66 0.264 0.292 0.292 0.297 0.283

Yaw from head gust < 0.66 0.264 0.292 0.292 0.297 0.283

Rate peak, from heave < 0.65 5.8e-4 8.2e-4 9.1e-4 65.1e-4 59.7e-4

oscil., from heave < 0.2 5.8e-4 8. le-4 11.8e-4 13.2e-4 45.7e-4

for 1° Yaw change > 2.4 2.800 2.773 2.835 2.861 3.430

Table 7.14: Design Evaluation, Forward Flight

Test

Result

Pitch Bandwidth

Phase Delay

Roll Bandwidth

Phase Delay.
Yaw Bandwidth

Rate Phase Delay

Heave Time Const.

Delay (s)

Pitch from vertical accel.

from Roll Cmd.

Rate from 1° step

Roll Osc. from 1 ° step

from Pitch Cmd.

Sideslip from 1 ° Roll step

ADS-33C

Target

Fig 1

(3.4)

Fig 2

(3.4)

Fig 8

(3.4)

<5.0

<0.2

< 1.0

<0.25
> 2.4

Fig 5(3.4)

<0.25

Fig 6(3.4)

Full State

Feedback

3.741

0.150

5.779

0.176

5.329

0.061

2.957

0.115

0.00779

0.002

1.860

0.00223

0.014

0.110

Luenberger
Observer

3.301

0.190

4.825

0.136

4.059

0.105

2.960

0.174

0.00779

0.002

1.847

0.00217

0.013

0.110

25th Order

Luenberger

3.296

0.189

14thOrder

Luenberger

3.325

0.180

14thOrder

Direct Opt,

3.324

0.180

4.810 4.844 4.844

0.136 0.115 0.115

4.063 4.244 4.244

0.107 0.112 0.112

2.952

0.176

0.00867

0.002

2.836

0.178

0.00822

0.006

1.846

0.00172

0.012

0.105

1.839

0.00151

0.013

0.Ill

2.836

0.178

0.00822

0.006

1.846

0.00171

0.012

O. 105
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Figure 7.6: Ideal UH-60 Command Responses
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Figure 7.7: Errors from Ideal Responses, Hover
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Figure 7.8: Errors from Ideal Responses, Hover
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Chapter 8

Future Work

8.1 Evaluation of Worst-Case Method for Loop Transfer

Recovery

It is perceived that minimizing the worst_case difference between the closed-loop responses

of a state feedback design and a those corresponding to a low order output feedback con-

troller case to a given range of disturbances would produce a more acceptable controller
than from the H 2 norm of the error. Given reasonable recovery, such a controller would be

less prone to extreme variation from the state feedback characteristics. This would include

loop transfer properties used in robustness measures. There exist several good test problems

where this design algorithm can be exercised.

8.2 Completion of the Hybrid Algorithm

The decomposition of the system matrix into a partition of non-defective eigenvalues and a

partition of defective eigenvalue blocks, as detailed in Appendix A, needs further evaluation.

A thorough test must preceed the conversion of the algorithms for computing 2d and JM to

the hybrid form.
The hybrid procedures for evaluating X and M, given in Appendix B, are more intri-

cate than either the robust or diagonal forms due to the presence of cross terms. These

cross terms are integrals containing both non-defective eigenvalues and defective eigenvalue

blocks. The additional numerical complexity was relatively slight for the X calculation

where simple closed form solutions could be derived to reduce the complexity of the cross

terms. Explicit handling of every cross term in a custom formula may yield rewards in

speed and memory usage. However, in the case of M, the problem is much more difficult.

For example, for the double integral containing the defective eigenvalue block Wc

fotfoVe_,(v-s)Bi12eWcvD21je_JSdsdv,

it may still be as efficient to simply apply the robust algorithm using these arguments.

8.3 Eigenvalue/Damping Constraints

A tidy design is often achieved in pole placement. While exact pole placement is not

possible within the context of numerical optimization, building a cost function based on

'PAGE_ II_,TEr'Ti0_t'LLYBLA,*IK

PR6C,I_I)IN6 PAGE BLANK NOT FILMED
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pole attractors [3] or forcing designatedpoles into a selectedregion [6] would seemto
be. Creatinga cost functionthat includeseigenvalueconstraintsand yet is robustto the
degeneratemodeconditionis a subjectfor further reseach.

8.3.1 Current Method

The currentmethodfor eigenvalueconstraintdependson the eigenvalue_igenvectorde-
composition,andthus will not work whendegenerateeigenvaluesexist in the closed-loop
systemmodel.

The eigenvalueconstraintsand their gradientswith respectto the controllerdesign
parametersaredefinedasfollows.Givena systemmatrix A we let

Avi = )_vi (8.1)

where A_ and v_ are the eigenvalues and eigenvectors, respectively, of the system matrix A.

We define a simple constraint function that is zero when the eigenvalues are in the desired

stability region, or a nonzero value equal to the distance away from the desired stability
boundary. One such function is

1 n

= {max(  - 0)}
i=1

This would reflect a cost function on real (or real part of) eigenvalues greater than a certain

a,n_. It would be zero if all eigenvalues were less than amax.

In addition to constraining the real part, one usually needs to constrain the damping
ratio

a_

to be larger than a certain value (say _,_i,_). Consider

n

1 _ {max(ai sinc_ + lwil cosa, 0)} 2
i=1

where cos oL = _mi,_ and sin (_ = y/1 - (_,_. Each summand of this function will be zero

if the corresponding eigenvalue satisfies the constraint; otherwise, it will be equal to the

square of the distance from the offending eigenvalue to the damping line.

The above constraint functions are differentiable and their gradients are useful for numer-

ical optimization, especially for the nonlinear programming algorithm NPSOL [21]. Given

we have

1 n

J_ = _ _.= {max(a_ - a,_, 0) }2

n

N -

Also, the damping constraint gradient is

OJ¢ max(aisina+iw_]cosa, 0) \-_--p sina + sgu(w_)--_pCOSa
Op i=1
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For non-degenerateeigenvalues,thesegradientsarewellbehaved.
Note that theconstraintgradientsareexpressedin termsof thegradientsof theclosed-

loopeigenvalues.Takingthederivativeof equation(8.1)with respectto aparameterp, we
have

or:

OA A OVi _ OA_ Ovi

(A - _I) Ov_ OAi OA
Op = - Opv*

The objective is to find an equation without a -_ term. One can diagonalize: A =

TAT -1, where A is a diagonal matrix containing the eigenva]ues of A. With this transfor-

mation applied to the above equation, we have:

A1-Ai 0 0
0

0 Ai-l-Ai 0
0 0 0

0 Ai+I-A_ 0
0

0 0 A,_ - hi

T_ 10v_
Op__ _ T-lV_p = - lOA--T- -_p V,

The i th equation from the above set shows a simple relation between -_ and _ without a

term -_, thus one can write:
-10A

0p (T-lvi)i

The notation (.)i denotes the i th row of the enclosed term. For complex eigenvalues, a + iw,

the real and imaginary parts of the above are _ and _, respectively. Note that when there

is a near degeneracy and the eigenvalues are nearly defective, T -1 will be badly conditioned.

8.3.2 New Method of Eigenvalue Constraints

There are two equally important aspects of these constraints. First is the mechanization of

the constraints themselves. The second is the ability to identify those parts of the system

matrix where the constraints should apply. One often has disturbable yet uncontrollable

modes where the eigenvalues do not obey the constraints and would upset the optimization

process if so included. Moreover integral poles are often formulated to serve a control or

estimation purpose.
It could be possible with the proposed method of decomposing the system matrix into

eigenvalue blocks one could derive a means of calculating the eigenvalue derivatives for those

blocks. All attempts so far have seemed preliminary.

Finally it may become that the only really promising method for forcing designated

eigenvalues to a given region will be the plant transformation methods of Kawasaki and

Shimemura [6] or Bernstein and Haddad [8].
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Appendix A

Preliminaries to the Hybrid

Algorithm

A.1 Introduction

It has been shown that the original gradient computation based on the diagonal form is fast,

though inaccurate for defective systems. While the robust form described in Section 3.3 is

accurate under most circumstances, it is also slower by an estimated factor of 8 or 9. The

next question is whether one can apply the faster algorithm to the non-defective part of

the matrix and the slower one to the defective part, thereby resulting in a fast and robust

overall numerical scheme. Until such a scheme is actually implemented and tested, one can

only speculate. There is a clear direction, however, as to how to structure that procedure.

In order to have control over the separation of the diagonalizable part and the defective

part one must abandon the simple eigenvalue-eigenvector decomposition for a combination

of the Schur decomposition and a procedure to separate the set of defective eigenva]ues from

the non-defective ones. This custom routine can then feed the actual hybrid computation

algorithm with the appropriate parts of the input matrix.

Once a matrix is in Schur form, there will be a block diagonal (consisting of individual

real eigenvectors and 2x2 blocks for complex pairs) along with an upper triangular part.

The 2x2 blocks are not yet in _ - w form. Moving non-defective eigenvalues apart from the

defective ones usually requires zeroing the upper-triangular interaction between these roots.

In fact, the very definition of a defective root depends on the ability to zero this cross-term.

A.2 Converting a 2x2 block to a- _v form.

Conversion of a general 2x2 diagonal block to the form:

and a scale conversion,

w_r] depends on a rotation

Eliza0][c ][ab][cs][ l0]0 1/d2 -s c f g s c 0 d2
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where s = sin(C) and c = cos(C). The result of the rotation is to bring the two diagonal

elements to equality. The rotated matrix becomes

c2a+sc(f+b)+s2g -s2f+sc(g-a)+c2blc2f +sc(g-a)-s2b s2a-sc(f +b)+c2g J"

Thus the condition on the diagonal elements results in

c2a + sc(f + b) + s2g

2sc(f + b)

sini2¢) = 2sc

cos(2¢) = c2 - s2

A

= s2a- sc(f + b) + c2g or:

= (c_ - s2)(g - a)

ig - a)

A

_ (f+b) where
A

= v/if+5) 2+ig-a) 2

Given values for sini¢ ) and cosi¢), it remains

off diagonal terms to being the opposite of one

diagonal terms). The result is:

to find the scaling terms that will bring the

another isince the scaling will not affect the

or

_ dl (if - b)

dl _ _ _-"
2 2

Of course the argument under the square root must be positive, which can be written as

if- b) 2 > A2.

A.3 Reduction of a 2x2 Block to Upper Triangular Form

The transformation from an upper Hessenburg form to the real Schur form for a matrix

depends on the QR iteration. This iteration has some difficulty for a matrix with defective

degenerate eigenvalues. Thus, there can be nonzero sub-diagonal elements not associated

with complex eigenvalues. It is possible for one to see nonzero subdiagonal elements for

a whole Jordan block, but usually one sees only a scattering of 2x2 diagonal blocks. It is

sometimes necessary to check each 2x2 block to see if it is non-converged or if it really is a

complex pair. Zeroing a sub-diagonal element can be done with a Givens rotation

[ c ][ob][cs]-s c fg s c

resulting in

[ c2a+scif +b)+s2g -s2f +scig-a)+c2b ] [d g]c2 f + sc(g - a) - s2b s2a - sc(f + b) + c2g = 0 g'
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Thus,c2 f + sc(g - a) - s2b = O. This can be manipulated into

To solve the above, we can consider it like a linear differential equation- there is a homo-

geneous part and a particular part. We can write:

cos(2¢) = gl(a-g) + K2(f + b)

sin(2¢) = gl(f +b)+ g2(g-a)

with

b-/
K2

(f + b) 2 + (g- a) 2

gl = [(g - a)2 + 4bf]1/2
[(f + b)2+ (g _ a)2]

K2 is associated with the "particular" portion and scales it to be equal to the term b----/:2 .

K1 normalizes cos2(2¢) +sin2(2¢) = 1. Note that one has the condition: (g- a) 2 +4bf >_ 0

which complements the condition facing the transformation converting 2x2 blocks into the

a - w form. In other words, if this condition is not met, it is a complex eigenvalue pair.

A.4 Reducing the Schur Matrix to the Diagonal Form

One can subdivide the problem of zeroing the upper triangular portion of a Schur matrix
into 4 cases that arise when one tries to zero the cross-term between roots. All of these cases

are just specifications of the general form specified in [27]. When a matrix has been Schur

decomposed there will, in the most general form, be an upper triangular partition along

with a diagonal of real roots and 2x2 complex pairs. A normal matrix will be diagonalized

by a Schur decomposition-- the Frobenius norm of the strictly upper triangular partition

of the matrix is known as a matrix's departure from normality (see [23]). To diagonalize the

upper triangular matrix we have to use nonunitary similarity transformations. The most
convenient form is

R= 0 I '

Suppose that one were to zero the upper triangular
with this transformation:

[i  1[i.]0 I 0 A2 0 I

I -P]0 I ;

part between two diagonal submatrices

[ A1 T- PA2 + A1P ]oA2

In general, one has the Lyapunov equation: T-PA2 +AlP = 0 to solve. This equation has

a solution provided that there are no eigenvalues in A1 equal to those in A2. However, in

general, the presence of degenerate eigenvalues, whether defective or not, will make deter-

mination of this transformation impossible. Not only that, but in numerical computation

defectiveness is more of a condition to be approached in a continuous manner rather than an
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on-offsetting.A measureof this morecontinuousform of defectivenessis in the condition
of the transformation(diagonalizing)matrix. The conditionof the overalltransformation
matrix will be helpedby limiting the conditionallowedfor theseindividual non-unitary
transformations.By declaringa minimumallowedcondition,onethusdetects,in a sense,
whicheigenvaluesarepart of a diagonalizablesubmatrixandwhicharenot. (Becausethe
inverseisexplicitly known,this conditionis easyto estimate.)

It may actually be that a pair of distinct (but close)eigenvalueswill get declareda
degeneratepair, but thiswi]l only imposeaslighttimepenaltyon theeventualcalculations.
It canbesaidthat the resolutionon theeigenva]ueswasnot sufficientto considerthem as
distinct.

Fortunately,non-defectivedegenerateeigenvaluesform a sort of normalsubmatrixso
that their cross-termsarealreadyzeroasa result of the Schurdecomposition--zerobeing
the effectivezerofor a givenmachineprecision,the oc - norm of the matrix, and the

machine zero given the algorithm for the subdiagonal elements. It is possible to detect this

relative zero condition and avoid problems in solving for a transformation matrix--by not
having to solve for a transformation matrix at all.

The end result will be the diagonalization of the non-defective eigenvalues, the con-

tinuance of an upper triangular block for the defective eigenvalues, and a transformation

that will remain well-conditioned. What becomes necessary, however, to keep the problem

tractable is to break the cross-term zeroing into 4 cases: 2 real roots; a real root and a

complex pair; a complex pair and a real root; and finally, between two complex pairs.

A.5 Reducing the Upper Triangular Part Between 2 Real
Roots

Reducing the upper triangular part between 2 real roots is the first (and easiest) case. One
literally has

0 1 0 A2 0 1 '

t
resulting in p = _2-_-h" One does not need to solve for p if tl2 is relative zero for the matrix
(thus, it would not matter if A1 = A2).

A.6 Upper Triangular Part Between a Real Root and a

Complex Pair

This case is elucidated separately mostly as a means of showing notation. The submatrices
of interest would be

0 1 0 0 All A12 0 1 0

0 0 1 0 A21 A22 0 0 1

Zeroing tn and t12 results in the following system of equations

AI2 A22 - All PI2 = t12

which should always be solveable. In any case, one could always check for a zero solution
here as well.
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A.7 Upper Triangular Part Between a Complex Pair and a

Real Root

This case is distinct from the above due to a slight difference in equations and notation

[10_pil]iAllt111[10pll0 1 -p21 A21 A22 tm 0 1 P21
0 0 1 0 0 An 0 0 1

Zeroing tll and t21 results in the following system of equations

[All ][ 111[tll]--_21 All -- ,_22 P21 t21

A.8 Upper Triangular Block Between 2 Complex Pairs

Here one solves for the 2x2 block that zeros the upper triangular portion between a set of

complex pairs (not necessarily in a - w form)

1 0 -P11 -PI2

0 1 -P21 -P22
0 0 1 0

0 0 0 1

All AI2 ill t12

A21 A22 t21 t22

0 0 An A_2

0 0 A21 A22

1 0 Pll P12

0 1 P21 P22
0 0 1 0

0 0 0 1

The accompanying system of equations is

All - _II A21 -A12 0

AI2 A22 - All 0 --)_12

--A21 0 A11 - A22 A21

0 -,_21 AI2 A22 - ,_22

Pll

P12

P21

P22

tll

t12

t21

$22

A.9 Using These Techniques for Zeroing Blocks

The emphasis here is to make sure that one can separate non-defective eigenvalues (and as-

sociated eigenvectors) from a blocks containing defective ones. While physically separating

individual eigenvalues (or complex pairs) from each other and from defective degenerate

blocks while zeroing the upper triangular part between the two may sound appealing, it

is easier from the bookkeeping standpoint to keep the diagonal terms .fixed, then organize
them at the end.

Thus one can proceed through the upper triangular part of the matrix in a sequential

order, using some sort of indexing array to encode the solitary eigenvalues, the complex

pairs, and those eigenvalues belonging to a block of defective degenerate eigenvalues. At

each upper triangular element (or block if this element associates one or more complex

pairs), one can attempt to zero the members using the methods previously indicated. If a

defective degenerate condition is indicated, the association with the eigenvalues will indicate
the appropriate block to assign the eigenvalues.

Those eigenvalues whose associated upper triangular parts have been zeroed can be

moved past one another in a matrix by a simple shift transformation. The rest will collect
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into blockswhenthey encountereigenvaluesthey cannotshift past. Thesesubblockswi]]
beupper triangularandtherewill benoneedto put theminto Jordanform.

SchurForm:

)tl U12 ...... _l,n

°° ". ,*

)_ ".. :

.o Un - 1 ,n

Decomposed:

"'. 0 0

A 0

O ,.

_-1 o
o D-N

0 0 "'.
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Appendix B

Cost and Gradient Computation

Using The Hybrid Algorithm

B.1 Introduction

The current two methods within SANDY represent two extremes in the handling of matrix

functions: the faster original "diagonal" method decomposed the argument matrices into

eigenvalues and eigenvectors, then applied scalar functions to the diagonal terms; while the

nominallly more robust method used an exponential series to compute a function of the
whole matrix.

While the diagonal method depends on successfully determining an eigenvalue_igenvector

decomposition, the robust form also has a weakness--precisely where the diagonal method

is best suited. If one has scales in a matrix that are wildly varying, the robust form is

more prone to error, even to the point where a defective-degeneracy does not look so bad.
Consider a root matrix

-1.0E - 8

0

0
A=

0

0

0

1 0 0 0 0

-1.0E- 8 0 0 0 0

0 18 1 0 0

0 0 18 0 0

0 0 0 -I.0E + 8 1

0 0 0 0 -I.0E + 8

This matrix is transformed by the following matrix:

T

0.2113 0.4524 0.6538 0.7469 0.1167 0.2260

0.0824 0.8075 0.4899 0.0378 0.6250 0.8159

0.7599 0.4832 0.7741 0.4237 0.5510 0.2284

0.0087 0.6135 0.9626 0.2613 0.3550 0.8553

0.8096 0.2749 0.9933 0.2403 0.4943 0.0621

0.8474 0.8807 0.8360 0.3405 0.0365 0.7075

The condition of this matrix is 51. This should not introduce any complications in this

comparison of methods. Because fundamentally all calculations depend on taking an expo-

nentiation a good test case can be founded on the comparison of exponentiation calculations.

Matrix exponentiation of the component submatrices of A and transforming by TAT-1 gives
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themostaccurateresult,

0.4628
0.3284
0.5318

1.0E+ 8× 0.6519
0.6717
0.5702

-i.2715 1.9936 1.0176 -1.4230 -0.4304
-0.3895 0.2382 0.3651 -0.1007 -0.1652
-1.0083 1.2521 0.8541 -0.8324 -0.3708
-0.9672 0.9181 0.8599 -0.5438 -0.3810
-0.9664 0.8768 0.8650 -0.5069 -0.3843
-0.9626 1.0705 0.8333 -0.6824 -0.3651

SupposeonetransformsA andthenexponentiates,thedifferencewith the previouscalcu-
lation wouldbe

-158.9406
-22.1443
-95.5913
-70.9993
-58.3577
-83.6180

175.7559 8.2702 -210.1598 -70.0591 84.2343
57.9680 -55.9843 -60.4853 30.5230 21.5482
147.6670 -69.7673 -164.4468 11.1770 63.0574
145.2202-113.4331 -154.9395 51.9346 57.2788
151.9611 -153.7657 -156.0765 86.3283 56.7881
141.6097 -81.9972 -155.5265 24.5134 58.7931

This error isstill only on the orderof onepart in 10 6 . An

diagonal method does not have as much error though the

T

-19.0856 23.9609 -13.3939 -24.0870 4.2366

-6.1430 5.6210 0.5094 -6.3906 -2.4559

-15.4594 17.7026 -6.9271 -18.3993 0.3217

-15.4252 16.3490 -3.9463 -17.4740 -2.0148

-15.4366 16.2809 -3.7615 -17.4420 -2.1720

-15.2599 17.0281 -5.8801 -17.8393 -0.4249

exponentiation arrived atbythe

matrix is de_ctive degenerate,

10.6407

2.9409

8.2278

7.9009

7.8944

8.0123

The condition of the eigenvector matrix is 9.9927E + 4 due to the defectiveness, thus the

calculation is probably not too impaired.

Thus, it is hoped that, in addition to an increase in calculation speed, this algorithm

will be made more complete.

B.2 The _' Integral

The simpler of these integrals is 2((t) = f_ eA_-Be cr dT. The matrices A and C can be de-

composed along the lines of an eigenvalue--- eigenvector decomposition, but only for the non-

degenerate eigenvalues. The degenerate eigenvalues are decoupled from the non-degenerate

eigenvalues, but are otherwise left in a non-diagonalized matrix. The non-diagonalized part

of the matrix will consist of decoupled blocks of degenerate sets of eigenvalues. This decom-

position is based on a Schur decomposition with a selective eigenvalue shift and a decoupling

algorithm. We have

A= [AA0] [ 010 WA VA 1 and C=Vc Ac0 We Vcl

with AA and Ac both being diagonal. For the exponential

cA =eXp{ [AA0] ) ([AA0])0 W A WAlt : VAexp 0 WA $ VAI"
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This resultsin the followingform for X

X(t) = ft eAr Be Cr dr
d0

where B = VA1BVe. The exponentials can be expanded and ,_ can be separated into parts

involving only the non-defective eigenvalues, the defective degenerate part, and combina-
tions of both. For

we have

_= [ BllB21B22B12] (B.2)

ft eAA.r_lleACr dTX(t) = VA f_ eWnrB21e hc_ dT f_ eAAT_12eWcr dT 1f_ eW_rB22eWcr dr Vc1
(B.3)

As a result one can use the algorithm used in [18] for the upper left partition (usually all or

most of the matrix), and thus preserve speed. The remaining portions involve various uses

of the exponential to represent the integral.

Consider the similar forms for the integrals of the upper right and lower left blocks.

These involve a combination of a diagonal portion and an irreducible portion (typically of

dimension much smaller than the original matrix). For example, one can rewrite the upper

right integral in the following way

_0 t
X12(t) = eAnTB12eWc'_ dT (B.4)

with

xk (t) (B.5)

(B.6)

For when )_Ak is a scalar, bkw is the k th row of B12. The number of columns in bkw

corresponds to the number of columns of the degenerate matrix Wc. Because these matrix

integrals can be broken down row by row, in the case of the upper right block, or column by

column, in the case of the lower left block, there is a considerable time savings. Computation

of the matrix exponential corresponding to the integral f_ eA_Be C_ dT for a general A, B,

and C is on the order of (dim(A) + dim(C)) z floating point operations. Breaking down this

integral by rows (or columns) results in the advantage of evaluating several small integrals.
This special integral form allows us to write:

j_0 tXkw(t) = bkw e (Wc+_A_l)r dT

An algorithm for evaluating the matrix exponential integral will be presented in section B.4.

For .'_Ak being a 2x2 complex root pair block, the situation is a bit more complicated.
Since

exp -- ea
-w a -sinw cosw '
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onecanexpandthe integral(B.6):

x (t)[coll]

& (t)[col2]

= t e_Akr cos(wAkr) bkwe Wcr dT+ e_Ak_"sin(wAkr) bk+,we Wc_ dr

/: /o= e_Ak_COS(WAkr) bk+lwe We" dr - e_Ak_-sin(COAkT) bkwe Wcr dT

Again, with ezAkr, cos OJAkT, and sin a_AkT as scalars we can re-arrange the above integrals

into forms depending on two basic terms:

fo t e (wc+_' Akl)_-COS(WAkT) dr

and

f0 t sin(wAkr) dT
e(Wc+a nk l)r

An algorithm for computing these terms will be presented in section B.5.

The lower right portion (containing only the degenerate eigenvalue matrices) will have

to be evaluated with the pure exponential form of the integral evaluation. The size of the

degenerate matrix blocks should not be very large relative to the number of non-degenerate

eigenvalues. Not only will this keep the overall computation from slowing down, but the

eigenvalues shall nominally be of the same relative magnitude.

B.3 The Ad Integral

This integral yields a somewhat more difficult set of cases of integrals to evaluate, as we
shall see.

The integral 3d(t) = f_ f_eA(v-S)BeCVDeESdsdv becomes, when A, C, and E are

partitioned into non-defective and defective parts.

t v cAn(v-s) 0 B eWcvJ_(t) = TA 0 eWA(v-s) 0

o]:D 0 eWEs ds dv TE1

jOt JOv e AA(v-s) _[_lleAC v

_)11e AEs ds dv

+JotfoveAA(v-s) B12e Wcv

_21 eAEs ds dv

_Ot Jov e WA(v-s) _21eAc v

/)11e AEs ds dv

+fotfoVeWA(v-s)B22e Wcv

D21e AEs ds dv

1 fOtfoVehA(V-s) B11e ^cv

I Zh_e W_ ds dv

] +jotfoVe AMy-s) B12e Wcv

] :D22eWEs ds dv

I fotfo'eWA(v-_)B21e AcÈ

I :D12eWEs ds dv

[ +fotfo_eWA(_-_)B22e Wc_

[ 1922eW_s ds dv
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where

T_IBTc = 13 =

T_IDTE = D =

811 812

_21 822

"Dll D12

D2_ D22

The first part of the M 11 summand can be evaluated in the standard fast way, so it

would be desirable to be able to evaluate the second integral as quickly. One can solve

analytically for the integral over s. Let's assume initially that the eigenvalue is real. We
have

fotfoVe_'(v-s)li_12eWcvD2ue_JSdsdv

= fote_*V(JoVe(_-_dSds) B_12eWcv_)21j dv

= _ B -WcvD
)_j _ i12 c: 21j dv

_i12 t

The end result is just the matrix exponential integral again. For a complex pair, one has

to deal with a 2x2 block (looking just at the integrand)

e_'(v-s) eoswi(v - s) Bi12 + ea'("-s) sinwi(v - s) _i+1,12 1 eWcv
e_'(v-_) cos wi(v - s) Bi+Ij2 - ea'(v-s) sin wi(v - s) Bi12 J

This becomes

. O'iS ]

D21je ajs coswj8 I T}213+le coswj8

-_)21j+leajS sinwjs ] _21jeaiS coswj8

[cos_i(v - s) g_l_ew°'_21i

+ sin w_(v - s) Bi+ij2eWevDmj]

• COS _j 8

-- [COS a)i(V -- 8) Bil2eWcv_)21,j+l

+ sinwi(v - s) _i+l,12eWcvl)21,j+l]

•sin wjs

ea_Ve(as-a_)s

I [COS _di(V -- 8) _il2eWcv_)21,j+l

I + sinwi(v - s) Bi+l,12eWc'Dmj+l]

[ .coswjs

[ + [COSWi(V -- S) 13i12eWcvT)21j

I + sinwi(v - s) Bi+L12eWcvD21j]

I • sin wj s

[cos_(v - s) B_+l,x2eW_'V21j [

- sin wi(v - s) Bil2ewcvD21j] [

•eos_js l

- [cosw_(v- s) B,+_,_eW_'_l_+l I

- sin wi(v - s) Bil2eWcv_21j+l] [

•sin wj s ]

[COSW_(V -- 8) Bi+l,12eWcv:D21j+l

- sinw_(v - s) B,_2eWc'_)2U+l]

.coswss

[COS_di (V -- 8) 13i+1,12eWcv_)21 j

- sin wi(v - s) Bil2ewcvD21j]

• sin wj s
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Theintegralsovers will boil down to these terms

f_ e(_j-a')s cos(wj - wi)s ds f_ e(_j-_')s cos(wj + w_)s ds

fo e(a_-_*)s sin(wj -- wi)s ds fo e(aJ-a')s sin(wj + wi)s ds

Substitution of these back in for our 2x2 matrix will yield a series of integrals of the form

e(WcTa'0" cos Jv dv

and

ot e (Wv+a'l)v sin Jv dv

The amount of algebra to get this matrix into a series of integrals on v is substantial.

Being able to re-express the integral over s in analytic form is not only sufficient for

simplifying the double integral but necessary. Changing the order of integration will in-

troduce numerically unstable terms that can be handled only by doing the whole double

integral numerically in the current "robust" Ad calculation. Thus one needs to have only

simple eigenvalues involved in the s integral. This happens only on the integrals in the .Mll

partition. The rest of the integrals will have to use the current robust form in some manner.

One could be given the impression that not much work and time is being saved. However,

a close examination of what happens when one does these other partitions with the robust

algorithm one will get a flavor for the amount of time saved.

Consider the sum for A422. With the following

_ot_oVewA(v-s)]321eAcv_)12e WEs z_ot_ove WA(v s)_2he_o..v:_)_12eWEs
ds dv = - • " . ds dv

t

Considering that the overall cost of a direct matrix exponentiation is of O(n 3) or more,

there is a net win. The fact that ,ke, may represent a complex pair in the form [ _r w ]
L --_ (7 J

is of no consequence as the summands will be evaluated by a direct matrix exponentiation.

B.4 Pad Series for Matrix Exponential Integral

In the hybrid formulation, one of the terms boils down to finding the integral of the expo-
rt Ar

nential of a matrix J0 e dr. It was suggested [23] to compute this integral by taking the

following exponential:

exp 0 A t = 0 eAt

This technique was disputed in [29], where it was determined that a direct Taylor Series for

this integral was considered a better method. The basis for this was that the larger overall

matrix contributed not only to a lengthly computation time, but also a loss of accuracy. A

third alternative is presented here in the use of a Pad6 Series for computing the integral.

One could call this series the generating function for the integral, but for the fact that it

is simpler to assume that one is integrating over a unit interval. Since the matrix contains

all the scaling information in a typical function call, it is a safe assumption. We know that:

foleAr dr = A-leAr 1=A-l[ eA - I]o
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and

so

N

eat .._ pN(z ) = _i=0 N_(At)
EMo D_(At) i

1E,=0(N, - D_)(At) _
te AT Nd'r ,_ A-

Jo EMo D_(At) i

The most commonly used case of the Padd Series for the exponential is a diagonal sequence

Corder of the numerator is equal to that of the denominator). For this, a nice simplification

in the above equation occurs since, for i even, N_ = D_, and for i odd, N, = -Di. Thus, we

can write the Padd Series for the integral generating function as:

N

fte A'_ dT ._ tp'N (z) = 2t _'i=1'i=i+2 Ni(At)(_-l)
Jo E_o D_(At) _

with

(2N - i)! N!
N, =

(2g)!i!(N-i)!

(2N - i)! N!
Di = (-i)' (2g)! i! (g _ i)!

With t being 1, we have the integral being equal to this particular Padd Series.

Nominally one has to scale the input matrix so that its oc-norm is less than 1/2. The

rescaling of the result is somewhat different than that of the matrix exponential. The matrix

itself doubles in scale, yet the integration interval does not change

1 f2 e Ar-- dT

2 Jo

The term eA is easy to generate from the integral at each step, i.e., multiply fo1 eAt dt by
the matrix A and add I.

B.5

nusoid

Another special form to handle from the hybrid formulation is

fteA_ fteA_sin WT dT or cos 03T dT.
Jo Jo

Pad Series for Integral of Matrix Exponential and Si-

[cos sin ]exp = ea
-w o" -sinw cosw "

Using the relationship
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Thus we can write

exp = e(w+al )-wI W+aI 0 -I sinw I cos _v

I e(W+_l)cos_v e(w+a')sin_v ]: --e (W+aI) sin_v e (W+aI) cos

It would seem that we are doing twice as much work as we need be. Since the augmented

2n x 2n matrix has several symmetries, one can do specialized sets of multiplications to

exploit these symmetries and avoid use of more matrix storage than necessary. In the series

calculation, one will need to take squares, etc of the argument matrix

W + aI wI = (W + aI) 2 -
-wI W + aI -_vaI

u)2 [

(W + aI) 2-w2I

One will have only 2 distinct submatrices within this matrix. Thus one need not do explicit

multiplies.

B.6 Scaling

Because all matrix blocks will have their eigenvalues on the diagonal and no sub-diagonal

elements, a single scaling parameter characterizes the magnitude of the resulting exponential

of the block. For example, in the block

U12 ...... Ul,n

• , •
• •

• •

)_i "'" :

,,,

)_1

+

_n-- ljn

0 U12 ...... _l,n

". *.,

O . "

, Un- 1,n

0

A_

0

where A1 through An are the same value. Because

e Wt : e()_l+WI) t = e_te WIt

one can start with an integral like

0 $ EWA T Be WC'r dr

and "balance" the two matrices into having the same diagonal value. Note that the smaller

modulus diagonal terms will probably reduce the number of scaling steps and/or series

length in the matrix exponential calculation, thus saving some time.
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Forthecalculationfor ._, the balancing of the matrix blocks is a more complicated job,

due to the existance of two separate integrals involving separate matrices

fotfoteA(v-S)BeCVDeESdsdv.

However, because the procedure is simple, the attempt is worth it no matter how little

results one gets.
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Appendix C

An Algorithm for SCB

The following sections show different steps in the computation of the SCB transformation

discussed in Chapter 5. It is hoped that by proceeding from the simple cases and ending
with the more general ones, a better understanding of the algorithm can be achieved.

C.1 S.C.B. for Non-Strictly Proper SISO Systems

In a SISO system, the presence of a direct feedthrough term essentially eliminates most of

the work needed in computing the special coordinate basis. In this case, for the system

{ _ = Ax+Bu (c.1)
y = Cx+Du

where u and y are scalar. With D ¢ 0, all the states are basically "internal" states--the

input can go to the output directly without necessarily passing through an integrator. One

can rewrite the state equations by eliminating u in terms of x and y as follows,

:_ = (A - BD-IC)x + BD-ly

Clearly there is no longer a direct input term from u to any of the system states once the

substitution has been made. Note that in this case, the system invariant zeros are simply
the eigenvalues of the matrix (A - BD-1C).

C.2 S.C.B. for Strictly Proper SISO Systems

Conceptually, this is the next easiest case. With no direct feedthrough term, the task is to

determine an output state with a direct feedthrough term through differentiation. Because

there is only one input and one output, only "output" states can have a direct input term.

Furthermore, the output states or its derivatives will always have a direct input term,

indicating that a SISO system is always left and right-invertible. We begin with the system

{ _ = Ax + Bu (C.2)
y = Cx

where u and y are scalar. Suppose that one transforms the states using an orthogonal
transformation V_ so that one of the states is the output,

C0=[c 0 ... O]=CVc; A°=VTAVc=[ A°_Ao:_yAo:_xA°Yx]

"PArlE_ INTENTIONALLYSLA_K

liDl_l_lDtNt_ PAGE E_LANK NOT FI4__ED
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and

Bo = V_B=

resulting in the state equations

b0yo

b0xl

b0x2

b0x(__l)

1B0z "

t[Z:]+LAo_ Ao_ j LBo_ J u

In essence, we have taken one derivative of the output and this also implies that the system
has at least one infinite zero.

If the term Boy (a scalar in a SISO system) is zero, then we continue to generate another

output state by differentiating 90. Namely,

_to = Aov_s#o + Aoyz_o

Making the appropriate substitution for 2o, we obtain

_)o= Aovygo + Aoyx [Aoz_Xo + AoxyYo + Boxu]

Because Yo is now a state variable, we can write the state equations for Yo, 90 as

[0 ,] [0] [0]_h = AoyzAozy Ao_ Yl + AoyzAox_ Xo + Ao_zBox u

where

[][]91 = yo
Yl ---- Yl Y0

Note that in SISO systems, 91 always contains the term with the highest derivative, and

771 covers the rest of the Output states. In addition, one of the internal states Xo can be

rewritten in terms of Yo, Yo and the remaining states in xo using the equation

Yo = AoyyYo + Aoyxxo (C.3)

Identifying which state among Xo to be replaced by Yo depends upon the structure of

Aoyx--it is prudent to choose the state corresponding to element in Ao_ having the largest
magnitude. Suppose that the jth element of the state xo is chosen. Let's denote this state

by _o and the rest of the internal states in xo by _o with

X01

X02

5o = Xo(j_l)

X0(j+I)

Xo(,,_ i)
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Partitioning the stateequationfor x0 into separate equations for 2o and Xo, we have

_.o = Aox_2o + Ao_o + Ao_Yo + Bo_zU (C.4)
7,
Xo = Ao_2_o + Ao_o + Ao_Yo + Bo_u (C.5)

Then using equation (C.3), we can express 2o in terms of the output states 91 and the

remaining states Xl as follows,

90 - Ao_yyo - Aoy_o = Aoy_2o,

or

where we define

-1 Aoy_ X l )2o = Ao_ ([-Aoyy I] Yl -

( E I][Yl : Yl Y0 (C.6)

Xl _ 00

So far we have replaced two of the system states by output states. The next part of the

algorithm can be done recursively.

First, we can re-write the system model in terms of the output states Yl and the re-

maining states Xl. The resulting state equations are

91 = Alyyyl + Al_xxl + Blyu
(C.7)

_1 = Alxyyl + Alx_xl + Blxu

where

[0 1] E 0 ] 1EAo  IlAlyy = Aoy_Ao_y Aoyy + Ao_xAo_ A°Y_

Aly_ = Aoy_A0x_ - A0y_Aoxe A0y eA0y_

A,_ = [Ao_+Ao_Ao-_I-Ao__l]
A lxx : Ao_ - 1- Ao_Ao_Ao_

[o]Bly = Aoy_ Bo_

[Yl _ is essential for the iteration. There is

3
Partitioning of Yl into 91 starting next no point

J

of taking the derivative of yl in the formulation of new output states, as they have no direct

interaction with the xl states. Recall from the first step that we have Yl = Yo. Subsequent

iterations would involve repeated differentiation of _1. Finally, at the kth-iteration the

output state vector y_ is given by

Y_ = 9_

where the output 9k represents the _th derivative of the output Yo.
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At the k th iteration, we have

_k

where

= Akyyyk + AkyzXk + Bkyu (C.8)
= AkzyYk + Ak.zzXk + Bkzu

Bky

Aky x m_

Akyy =

0

0

= " (C.9)

o
bk_)

(C.lO 
Akgz

0

0

: [I] (C.11)

0

Ak99 Ak99

If the term Bky has some nonzero entry (i.e., bk9 _ 0), then the SCB transformation is

complete. Otherwise, one must continue to take derivatives of the output state Yk as long

as there are nonzero entries in the term Akyx. Note that both the terms Bky and Akyz

cannot be zero simultaneously in a SISO system since it is always right-invertible.

When the term Bky is nonzero, then the k th derivative of Y0 has a nonzero control input

term. The control input u can be substituted out in terms of the output state, its derivatives

and the remaining internal states xk as

u = 1/bk9 [_lk- Ak99k?)- Akg,)flk- Ak_)zXk]

This can also be accomplished by performing the following state transformation

0][::]
where

p T --1 T [00 01�bag]= Bkx(Bk_Bky) Bky = Bkz "'" ,

and

0]AaI Aaa __ I Akxy Akxz P I "

After the transformation, the u input is removed from the state equations associated with

the internal states xk and we arrive at the final SCB form,

The system invariant zeros are simply the eigenvalues of the submatrix Aaa. Clearly, some

criterion must be established in testing whether the term b_ at each iteration is zero or

near zero. Often, a pre-specified level of tolerance must be given to the SCB algorithm for

this singularity test.
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C.3 S.C.B. for Multi-Input and Multi-Output Systems

Let's consider the following system

{_ = 2,x+_ (c.12)= Cx+D_

where we assume without loss of generalities that the matrices [/_T, DT]T and [C', D] have
full rank.

Analogous to the non-strictly proper SISO case, we apply the singular value decompo-

sition to transform the inputs and outputs so that the direct feedthrough term takes on the
following form

D = UDEDV T = UD

as 0 ......... 0

0 a2 0 ...... 0

...

0 ...... ok ... 0

0 ......... 0 am

0 ............ 0

: : : : : :

where UD and VD are orthogonal transformations and the singular values are given in a

decreasing order ( o2 >_ 02 k "- _ o,,_ > 0). The transformation VT is applied to the input

while the transformation UT is to the output _. Further classification and partitioning of

the x states will still be required, as well as for any remaining input and output terms that

are not related to the direct feedthrough term. Note that the singular values can be zero

for some k < m. With the above input-output transformations, we define

and

The output equation becomes

U

[51 , ° °0]
Partitioning of {fi, u} and {9, Y} depends on the rank of D. The matrix _D represents the

upper-left nonsingular matrix of ED. And the matrix C and C are given by

We can express fi in terms of the output 9 and the system states x from the equation
9 = _x + ED_ as

= _]D1 [Y-C'x] (C.13)
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Thesystemgivenin equation(C.12)canbe re-writtenas

or

= fi_x + [_ + Bu

Using equation (C.13), we have

( _ = Ax+Bu+L 9
y = Cx

(c.14)

where

First let's consider the case where fi comprises all of the inputs, hence the input u is non-

existent. Furthermore, if the outputs y is also non-existent, then the SCB transformation

is complete resulting in the following system,

{ _ = Ax+ L[I= C'x + _]D_ (C.15)

Clearly, the system is right- and left-invertible with no infinite zeros. Furthermore, the

system invariant zeros are simply the eigenvalues of A.

Let's examine next the simple case where _) comprises of all the outputs, then the

remaining inputs u must be associated with the internal states x in the equation

2 = Ax+Bu+L_ (C.16)

We can further distinguish the system states x into two subspaces identified with states x_

and xc corresponding respectively to the uncontrollable and controllable subspaces of the

inputs u, as discussed in Section 5.3. The resulting system is in the following SCB form

01 [.]_c = Ac_ A_ xc Bc u+ Le

where the pair (Acc, Be) is controllable. Clearly, the system is right-invertible (but not

left-invertible due to the presence of u) and has no infinite zeros. In this case, the system

invariant zeros are simply the eigenvalues of Ao_.

If on the other hand there are outputs y in equation (C.14), then they need to be

converted into states in a manner similar to that shown in Section C.2 for SISO systems.
The procedure will be described in more details in Section C.4.

In the next section, we examine the general case where both u and y exist in the

equation (C. 14).
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SCB Transformations for Decomposing the Remaining
States

C.4

Let's consider the system given in equation (C.14) where the direct input _ has already

been eliminated through the output _). We now have the following system,

{ :_ = Ax+Bu+L_ (C.17)y =Cx

The task is to resolve the system into the 4 types of SCB states y.f, Yb, xa, and xc. The

first step follows conceptually the procedure in Section C.2 for SISO systems. We begin by

performing the singular value decomposition on the matrix C,

C = vc:cv_

= vc[_c 0]vc_

= [co 0]y_

(c.18)

where Uc and Vc are orthogonal matrices and Ec is a nonsingu]ar matrix of dimension

p - m0 which is actually equal to the rank of C.

At the first iteration k = 0, we transform the states x such that some of the states are

outputs with the following state transformation

Yo ] = VTx (C.19)X0

Letting u0 = u, the state model in equation (C.17) becomes

_lo = VTAVc Yo + VTBuo + VTL_

[xo]
y = CVc xo

or

(C.21)

L JXo

Next, we identify the output states that have direct interaction with uo by examining the

term Boy. Again using the singular value decomposition, we have

We then apply the following transformations to the inputs u and the outputs Y0,

and

Vs°_U°= _o
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Clearly,

or

and

[Oo]_ [_o]Yo = Uh°* AoyyUBoy 90 + U_oyAoyxXo + UToBOyVBo_ + UToyLoyO (c.25)

In the state equation for Xo, we can eliminate the dependency on rio using the following
equation

_o=_-1 [0o- Ao0ogo- Ao0_o- aoft_o- Lo_0]Boy

This procedure can also be accomplished by invoking the following state transformation

where

90
9o
_o

I

= 0

-p

0 0

I 0

0 I

9o

_o
2C0

^ ^ --

P = BozVBo_EB_,

Let's define the state matrices in the transformed system as

[, oo][Ao  fi-o_ Ao_ fi-o_, = I 0 Ao_0 Ao._._
Aoao Ao_ 9 A,o.e._ _0p 0 I Ao_ft Ao_ _ 00]Ao_ 0 I 0

Ao._ P 0 I

and

[A ]_;] Bou 0 Lo9

0 0 Lo_ =
0 Bo_ Lo_

I 0 0

0 I 0

-P O I

[8o _'o o]=[8o C'o

where [_o, _o] = CoUBo_.

The resulting system is given by

9o = Ao_oAo_ A-o_ 90
ko Ao_o Ao_ Ao._ 2,o

= [d:o _o o] 90
5:o

-4-

EBoy 0 Lo9

0 0 Lo,_

BoJ?_oy Bo£_oy Lo_

I 0 0]
0] 0 I 0

P O I "

^

"EBoy 0
0 0

o Bo_

Loft ] _o oo,
Lo_ J

(c.29)
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Next, weidentifyin thestateequationfor 9o those outputs that have direct influence from

5:0. The output vector _o is then partitioned accordingly into Yo and g0. The partition is

done based on the rank of Aog_. Similar to previous matrix decompositions, we perform

the singular value decomposition on the matrix "4o_,

iio9_
T

= UoA_._Eo_Vo,_._

: Oo}
where Uo_e and Vo29_ are orthogonal matrices. Let's define the following state transfor-
mation

=
and the following output transformation

[Yo90 ] ----UTAg_90 (C.32)

The output state equation for _ is now partionned into the following output state equations

9o = ilo999o+ 71o99flo+ Ao_9_o -I-_o_o + Lo99 (C.33)_o = 7to,j99o + itofj,jio + Ao_,gYo + Lo,ffl

where ZoAg_ is a square and invertible submatrix of EoA_.
By taking derivatives of the 90 states, the algorithm converts system states 5:0 into output

states. This technique will be repeated on subsequent steps until the overlap indicated by

the matrix .4k9_ is zero at some k th iteration.

Note that if there is no direct feedthrough term Lo9 in the Yo state equation, then one

can simply take its derivative as follows,

9o= _io9_9o+ _o_9o+_ioyg_o+ _o;_fio (C.34)

thereby creating 9o as a new set of output states replacing }o. Of course, we need to

substitute 6o, 9o, and }o from equations (C.29) and (C.33) in the above equation. The

term Yo is not substituted out because it is no longer part of the state equations--this

equation is used to replace }o states with 90 states.

However, if the direct feedthrough term Lo9 is not zero, then the term Log_ would be

present in the equation for 9o in equation (C.34). It is impossible to create 9 since this

term would include a time derivative of the control term ft. However, instead of creating

the states Yo, one would consider a new output

Y0 = y0-Lo99

= Ao_flo + 7io9,_9o + Ao_,_9o + _o_o
(C.35)

Differentiating the above equation we have

90= _o_990+ &_9o + _o_9o + _0;gfio (C.36)

Note that we have a new output state equation from the above definition of Y0

9o = 90 + Lo99 (C.37)
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andequation(C.36)becomes

Yo = Aoog0o + ,4o99 [Yo + Log0] + Ao990o + EoAb_o (C.38)

Substituting the appropriate equations for 0o, _o and _ into equation (C.38), we obtain

Yo = fito99[Yo +Lo99]

+ Ao_9 [Ao009o + Ao_gyo + Ao099o + fi.og_Xo + Aog_o + Eso, fi_ + Log_)]

+ Aog0 [fio99_o + Ao099o + Ao009o + Lo09]

+ _Ao_ [Ao_0o+ Ao_o_o+ Ao_o_o+ Ao_#o + Ao_#o + _o_o + Lo_0]

After simplification, we have

Yo = Ao_99[/o+ Ao_oOo + Ao_oOo + Ao_9_Yo+ Ao_2o + A®_2o + ho_fio + B@_ + Logo (C.39)

Using equation (C.35), we can solve for xo in terms of Yo, 0o, Yo, Yo and 0. Namely,

_0 ^ -1= EoAfiz [_o + Loy0 - Aog0_)o - Ao00_o - Ao09yo] (C.40)

With equation (C.40), one can eliminate the dependency on xo from all the above state

equations. The resulting system state model has the following form

0o

0o

_o
_o

Ao99
0

= Ao99

Ao_

Ao_o

= [_o eo¢o

Ao_ Aoo_ Aoo_ /io_
0 0 I 0

Aooo Aooo 0 0

Ao_o Ao_o Ao_ Ao_
Ao_o Ao_o Ao_ Ao_

yo
o o] Oo

_)o
_o

• _Bou

0

+ 0

0

(C.41)

Lo9

0 Lo9 _to

0 Lo9 £to

Bo_ Lo_ I 0
_o_ Lo_

^

Let's apply the following state transformation to eliminate the term Bo_ in the input matrix
associated with the input Uo,

I

0

0

-p

0

Tv

0 0 0

I 0 0

0 I 0

0 0 I

0 0 0

•E Bo_ 0
0 0

0 0

Bo_ Bo_

0 /)o_

i] ":_o,,
o0
0

Loo]

Loo ]

0 Loo ]

0 Loo 1

0 Lo_

Bo_ Lo_

[_o_ Lo:_
(C.42)

^ ^--1

P = B@EBo _

Bo_ = B®

Lo_ = - P Lo_ + L®

(C.43)

where

'_Bo_ 0 Log ]

0 0 Loo [

o o Lool

0 Bo_ Lo_ ]0 Bo_ Lo_
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Applying the sametransformationTp to the system and output matrices, we obtain

I A_ Ao_ Ao_ Ao_,_ Ao_"0 0 I 0

/Ao,9_ Ao,j_ Ao_ o o

LAo_ Ao_ Ao_ Ao_ Ao__

T_ 1
0 0 I 00

i_io_ Ao_ Ao_ o

_Ao_9 ,4o_ "4o_ A-o_ Ao_-

Tp

[,4o Co _'o o o]

The new system is of the form

_o Ao_ Ao_

_)o o
?'% = Ao_
_o A@
xo Ao_

9o
90

= [do Co do o o] ._o
_o

[8'o Co d'o o O]Tp
(C.44)

0 0 I 0

Ao_9 Ao_ 0 0
90
9o
_o
_o

^

• _Bo_

0

+ 0
0

0

0

0

0

Bo,) L°]F]Lo_ L :Y

Lo_

(c.4_)
The next iteration can be carried out in a similar fashion for the subsystem corresponding to

the system states _0 and ._o. For convenience, we re-define them as yl and x_ respectively,

Y, --Yo (C.46)
Xl _0

and letting the inputs _)1 and Ul be

_o
yo
_o

(C.47)

u, = % (C.48)

At the iteration k = i, the system now has the familiar form of equation (C.21) correspond-

ing to the case k -- 0,

LA,x_, Alxxj LBI_ LL,_J
(C.49)

For the above system, we apply the same procedure as developed for the case of k = 0. The

SCB algorithm continues until the term A@_ is equal to zero. At the last kth-iteration, the
subsystem will be of the following form

• _B_u

+ 0

0
0 Lk9 | 5k (c.s0)
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In the aboverecursivealgorithm,the systemstateswill havethefollowingcomponents

_" 8cb

- ^

yo

Yo

yo
^

Yl

yl

Yl

^

Yj

Yj

A

Yk

Yk

_Xk

(C.51)

We note the following useful relations

dim($j) = dim(_j)

gj] (c.52)dim(_j_l) = dim( _j )

9j

for 0_<j_< k.

Finally, we can partition Xscb further into the set of yf, Yb, Xc and x_ states defined as
follows,

90 -1

Yo I

yll

Yl I

yf = (C.53)

YJl

,_/k J

The number of infinite zeros of order j is equal to the dimension of the vector _j (or _j) for
O<j<k.

Yo

yl

yb = _j (C.54)

.Yk

The system structure associated with the state equations for _j has no direct input terms

from _j, _k and 2j for 0 < j < k. Hence, the presence of any of these states would indicate

that the overall system is not right-invertible.
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If theterm/_k_at the last iteration isnonzero,then the setof inputsik existsandthe
systemwill not be left-invertible.In this case,onecanfurther partition the states2k into

x_ and xc states where xc belongs to the controllable subspace of ilk. Namely,

_oo][::]+[00_ _:]_
0 _k

(c.55)

Eigenvalues of the matrix Aaa corresponding to the uncontrollable subsystem xa are simply

the system invariant zeros.
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Appendix D

Robust Gradient Routines

intgl2 .................................................................................

2• FORTRAN subroutine for computing: X = e Pp*8 Cov0 eFP'*_ds

• INPUTS:

Nsysord is the order of the system matrix

N2sysord is the row dimension of Cov0, usually = Nsysord

Fp, the system matrix

Coy0, the base matrix within the integral (see above formula)

work, an double-precision valued work array

iwork, an integer valued work array

tf, the final time

• OUTPUTS:

A" matrix

• SUBROUTINE CALLS:

abx matrix multiplication

abtx matrix multiplication of one matrix and the transpose of another

atbx matrix multiplication of the transpose of a matrix and another

abte transpose of a matrix

lsolve solves a system of equations, often used to compute matrix inverses

"PAG_I_- I_ITENT!O_,LLYBLP,r_K

R_OIDH'_; PAG;E BLANK NOT FK.,'_ED
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cortex2
o. • ............ oooo.oo ..... ooo.oo.oooo_ooo.oo..o.oo ...oo.°.o..o.oo.0oooooooo0o.

• FORTRAN subroutine for computing

/0 /0A4 = eVp' *(v-s)CtQC eFp*v • Gamp • Gamp t • egp' *s ds dv

• INPUTS:

Nsysord is the order of the system matrix

N2sysord is the row dimension of CtQC, usually equal to Nsysord

Nnoises is the column dimension of Gamp, or the number of independent noises

Fp_ the system matrix

CtQC, the base matrix within the integral (see above formula)

Gamp, the secondary base matrix within the integral (see above formula)

work, a double precision valued work array

iwork, an integer valued work array

tf, the final time

• OUTPUTS:

DCost_ the A4 matrix

• SUBROUTINE CALLS:

abx matrix multiplication

abtx multiplication of one matrix and the transpose of another

atbx multiplication of the transpose of one matrix and another

abte transpose of a matrix

lsolve solves a system of equations, often used to compute matrix inverses

PadExp is the Pad_ matrix exponentiation routine (without squaring or scaling)
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PadExp ..............................................................................

• FORTRAN function for matrix exponential Pad_ series specialized to this case of
function evaluation--where the matrix has a known structure

FP _
exp 0

0

INPUTS:

CtQC 0

-Fp eFP*tCovO

0 Fp I

dT = Un

0 Qn

Nsysord is the order of the system matrix

N2sysord is the row dimension of CtQC, usually equal to Nsysord

serlen is the length of Pad_ series desired

iwork, an integer valued work array

dT, the final time (usually a small increment here)

Fp, the system matrix

CtQC, a base matrix within the .M integral

Coy0, a base matrix within the .M integral

Qn,Rn,Sn,Un,Vn are all numerator summands for exponential series of a matrix 3

times the dimension of Fp (5 submatrices, not 9, because some terms are 0 and

others are repeated)

Qd,Rd,Sd,Ud,Yd are all denominator subblocks of the exponential series. These

are nominally work arrays

workl,work2 are temporary storage work matrices (same size as Fp)

work, a double-precision valued work array

OUTPUTS:

Yn is the AA matrix for small scaling time. It is part of the matrix exponential

Rn, a part of the overall matrix exponential ([1,2] partition above)

Un, a part of the overall matrix exponential ([2,3] partition above)

Sn, the exponential of the -Fp matrix and part of the overall matrix exponential
above

Qn, the exponential of the Fp' matrix and part of the overall matrix exponential
above

SUBROUTINE CALLS:

abx matrix multiplication

abtx multiplication of one matrix and the transpose of another

atbx multiplication of the transpose of a matrix and another

abte transpose of a matrix

lsolve solves a system of equations, often used to compute matrix inverses
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testintg ..............................................................................

• TESTINTG is a program for testing the intgl2 subroutine. This test is by way of com-

parison with the "diagonal" method for a series of test cases, both with diagonalizable

and non-diagonalizable matrices

• INPUTS:

Test inputs are a series of system matrices put in the program via FORTRAN DATA

statements (they are basically internal to the program)

• OUTPUTS:

Test results that list the input matrices and the results of the computations for both

the diagonal and robust routines are displayed directly to the screen

• SUBROUTINE CALLS:

testin is the actual subroutine that does the tests, but it is part of the same source

file, so it is not all that separate

eigenv does an eigenvalue_igenvector decomposition of the system matrix

abe assigns one matrix to another

lsolve solves systems of equations, in this case it is used to find a matrix inverse

fexp is a specialized scalar exponentiation routine particular to SANDY

aatx multiplies a matrix by its transpose

abx multiplies two matrices

abtx multiplies one matrix by the transpose of another

intglx is the original "diagonal" means of calculating X

prntm prints a matrix out to the screen with a banner and label

intgl2 is the "robust" subroutine for computing X
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testcone .............................................................................

• TESTCONE is a program for testing the conex2 subroutine. This test is by way of

comparison with the "diagonal" method for a series of test cases, both with diagonal-

izable and non-diagonalizable matrices

• INPUTS:

Test inputs are a series of system matrices put in the program via FORTRAN DATA

statements (they are basically internal to the program) These tests are the same

as for the program testintg

• OUTPUTS:

Test results that list the input matrices and the results of the computations for both

the diagonal and robust routines are displayed directly to the screen

• SUBROUTINE CALLS:

tstrun is the actual subroutine that does the tests, but it is part of the same source

file, so it is not all that separate

eigenv does an eigenvalue_igenvector decomposition of the system matrix

abe assigns one matrix to another

lsolve solves systems of equations, in this case it is used to find a matrix inverse

fexp is a specialized scalar exponentiation routine particular to SANDY

aatx multiplies a matrix by its transpose

abx multiplies two matrices

abtx multiplies one matrix by the transpose of another

atbx multiplies the transpose of one matrix by the other

conexp is the original "diagonal" means of calculating M

prntm prints a matrix out to the screen with a banner and label

conex2 is the "robust" subroutine for computing Ad

intgl2 is the "robust" subroutine for computing 2¢
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Appendix E

General Utility Routines for

Synthesis and Analysis

pseudoi.m ...........................................................................

Tinv= pseudoi(T);

MATLAB function for computing pseudo-inverse of T via the Singular Value Decom-

position. An inverse of T is guaranteed in the sense that Tinv*T = I', where I' will

have either l's or O's along the diagonal, and O's everywhere else. The number of l's

is equal to the rank of T

• INPUTS:

T is the input matrix

• OUTPUTS:

Tiny is the pseudo-inverse

rmodal.m ...........................................................................

• IT,D] = rmodal(A); MATLAB routine for real eigenvalue/eigenvectors

• INPUTS:

A matrix to be decomposed

• OUTPUTS:

T real transformation matrix

D "Diagonalized" matrix of real eigenvalues and 2x2 a-w blocks
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balreal2.m
..... ooooo.,,.oo,,oo°oo.ooo...,..ooooo..o.o°o.oo.ooo.°o.°oo,,..oooooo...°o

[Abal,Bbal,Cbal,HSV,T] = balreal2(A,B,C);

Robust form for balanced realization: algorithm works even when the system contains

uncont rollable/unobservable modes

INPUTS:

A,B,C, System dynamics, input distribution, and output distribution matrices

OUTPUTS:

Abal,Bbal,Cbal Balanced state matrices

HSV are the Hankel singular values

T is the transformation matrix for balanced realization

gainloci.m ...........................................................................

• [zeroid] = gainloci(A,B,C,D,K,output,input,gains);

MATLAB routine to compute closed loop eigenvalues for field of gains (negative feed-

back only). Normally used in single loop gain margin computation

• INPUTS:

A,B,C,D System matrices

K Nominal feedback gain (scale factor) for loop to be evaluated

output is the index of the output for the loop to be fed back

input is the index of the input of the loop fed back

gains is the field of gains, relative to K

• OUTPUTS:

zeroid is the closed loop eigenvalue series corresponding to the gain field

Gain margin in both magnitude and db
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phasloci.m ..........................................................................

• [zeroid] = phasloci(A,B,C,D,K,output,input,phases); MATLAB routine to compute

closed loop eigenvalues for a set of phase values (deg), negative feedback only. Nor-

mally used in single-loop gain margin computation

• INPUTS:

A,B,C,D System matrices

K Nominal feedback gain (scale factor) for loop to be evaluated

output is the index of the output for the loop to be fed back

input is the index of the input of the loop fed back

phases is the set of phases (deg)

• OUTPUTS:

zeroid is a series of closed-loop eigenvalues corresponding to the given set of phases

Phase margin in degrees

lqrcross.m ...........................................................................

[K,S] = lqrcross(A,B,C,D,Q,R);

MATLAB routine to compute state feedback gains and Riccati solution by direct

eigenvalue/eigenvector partitioning

• INPUTS:

A,B,C,D System matrices, with control input u in, criterion output z

Q Criterion weighting matrix

R Control weighting matrix

• OUTPUTS:

K State feedback matrix

S Riccati solution
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maklticl.m ..........................................................................

• [Ael,Bcl,Ccl,Dcl] = maklticl(A,B,C,D,Bi,Di,Ac,Bc,Cc,Dc)

Creates Linear Time Invariant time domain closed loop system matrices from plant

(A,B,C,D,Bi,Di) and controller (Ac,Bc,Cc,Dc) matrices. The plant has both a control

input u and a command input Uc:

dx
- A • x + B * u + Bi * Uc(often B=Bi, but not always)

dt

y = C,x+D,u+Di,Uc

Assuming NEGATIVE feedback from the controller, this routine uses the following

equations:

Acl =

Bcl =

A- B(I + Dc* D) -1Dc* C

Bc(I + D * Dc)-IC

Bi - B(I + Dc * D)-IDc * Di

Bc(I + D * Dc)-I D

(I + D * Dc)-ICCcl = _(I + Dc, D)_IDc, C

(I+D,Dc)_IDiDcl = -(I + De, D)-IDc, Di

-B(I + Dc , D)-ICc

Ac - Bc(I + D, Dc)-I D , Cc

]
±(I + D* Dc)-ID* Cc ]

-(I + Dc* D)-_Cc ]

]
If either (I + D • Dc) or (I + Dc • D) are non-invertible, the solution is beyond the

scope of this subroutine

• INPUTS:

A,B,C,D,Bi,Di are the plant matrices, with Bi and Di being the command input

distribution matrices

Ac,Bc,Cc,Dc are the controller matrices

• OUTPUTS:

Acl,Bcl,Ccl,Dcl are the closedqoop output matrices. The columns of Bcl and Dcl

correspond to the command input Uc.
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sandy2.exe ...........................................................................

Executableprogramfor controllerdesignviaoptimization.This formof SANDY uti-
lizesbothdiagonalandrobustformsof thegradientcomputationalgorithm.Switches
betweenalgorithmsaccordingto the conditionnumberof the eigenvectormatrix de-
rivedfrom the systemdynamicsmatrix.

• INPUTS:

Data file for describing the plant, controller design parameters, and current con-

troller setup.

• OUTPUTS:

Log file for the optimization run, reports how well the optimization did and many
characteristics of the final closed loop system.

SANDY formatted file for describing current controller

MATLAB formatted file for describing current controller

wcsandy.exe .........................................................................

• Executable program for controller design via optimization. This form of SANDY

utilizes the diagonal form of the gradient computation algorithm. This program also

uses the variant "worst-case" cost function approach.

• INPUTS:

Data file for describing the plant, controller design parameters, and current con-
troller setup.

• OUTPUTS:

Log file for the optimization run, reports how well the optimization did and many
characteristics of the final closed loop system.

SANDY formatted file for describing current controller

MATLAB formatted file for describing current controller
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Appendix F

UH-60 Rotocraft Design Files

(Chapter 7)

uh60comd.m ........................................................................

• MATLAB script file for generating and plotting command responses

• INPUTS: (no formal argument list-items named actually used)

Acl Nomenclature for dynamics matrix

Bcmd Command input distribution matrix

Ceval Output distribution matrix--assume the outputs are in the order: p, q, r, u,

v, w, ¢, O, 6o, 6s, 6c, and 5TR.

Dcmd Command to output direct distribution

icmd Selects appropriate column of Bcmd

U2 Command input profile

T2 Time base

• OUTPUTS:

Y, the generated responses from the MATLAB function Isim. The plots of p, q, r,

u, v, w, ¢, O, 5o, 5s, 6c, and 6TR are in 3 sets of panels.

Plots of command responses.

makidea0.m (makideal.m) ........................................................

• MATLAB script file to fabricate the ideal response model in the system matrices:

Aideal, Bideal, Cideal, and Dideal.

• OUTPUTS:

Aideal,Bideal,Cideal,Dideal are the literal matrices (namewise) created-no argu-

ment list for input or output, llth order system.

PAGE /0_ INTENTIONALLYI_LANK

PRiC_IDINQ PAGE BLA,.'_K NOT FILMED
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ad2delay.m ....................... • ........................,,.....................I..

[Ad,Bd,Cd,Dd] = ad2delay(A,B,C,D,Tdelay);

MATLAB function to add 4 first-order actuator delays to the system model.

INPUTS:

A,B,C,D is the system model, assumed with 7 inputs.

Tdelay is the delay time, in seconds.

OUTPUTS:

Ad,Bd,Cd,Dd is the delayed actuator output system.

adodelay.m ..........................................................................

• [Ad,Bd,Cd,Dd] = adodelay(A,B,C,D,Tdelay);

MATLAB function to add 12 first order sensor delays to the system model.

• INPUTS:

A_B,C,D is the system model, assumed with 31 states and either 12 or more sensor

outputs.

Tdelay is the delay time, in seconds.

• OUTPUTS:

Ad,Bd,Cd,Dd is the delayed sensor output system.
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fabsylq0.m (fabsylql.m) ...........................................................

• MATLAB script file for designof statefeedbackfor the hover(forwardflight) flight
condition.Usedin LuenbergerObserverdesign;includesdelayedoutputsto integra-
tors.

• INPUTS:

f01_g2r2.mat (fl5_g2r2.mat) UH-60 state model linearized from nonlinear simu-

lation program output. Flight condition point: 1 knot forward velocity (15 knots

forward velocity) . Additional environmental parameters associated with this

flight condition: air density 0.002377 slug/cubic foot; rotor speed 27 rad/s; and

gross weight 16,800 lbs.

Q and R weights are internal to the file, nonetheless they are nominal "inputs".

• OUTPUTS:

State feedback matrix K in file: kmatalt0.mat (kmataltl.mat).

Plots of command responses for closed loop design

• CALLS TO:

makidea0.m (makideal.m) produces the ideal response/feedforward.

ad2delay.m adds 4 actuator delays to the system model.

adodelay.m adds 12 sensor delays to the system model.

lqrcross.m solves for state feedback gains via partitioning the Hamiltonian matrix.

uh60comd.m to generate the plots of the command responses
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fabuhlqO.m (fabuhlql.m) ..........................................................

• MATLAB script file for designof statefeedbackfor the hover(forwardflight) flight
condition.Usedasbaselinestatefeedbackdesignfor comparisonto output feedback
designs.

• INPUTS:

f01_g2r2.mat (fl5_g2r2.mat) UH-60 state model linearized from nonlinear simu-

lation program output. Flight condition point: 1 knot forward velocity (15 knots

forward velocity) . Additional environmental parameters associated with this

flight condition: air density 0.002377 slug/cubic foot; rotor speed 27 rad/s; and

gross weight 16,800 Ibs.

Q and R weights are internal to the file, nonetheless they are nominal "inputs".

These are the same as those of fabsylqO (fabsylql).

OUTPUTS:

State feedback matrix K in file: kmat0.mat (kmatl.mat).

Plots of command responses for closed loop design

CALLS TO:

makidea0.m (makideal.m) produces the ideal response/feedforward.

ad2delay.m adds 4 actuator delays to the system model.

adodelay.m adds 12 sensor delays to the system model.

lqrcross.m solves for state feedback gains via partitioning the Hamiltonian matrix.

uh60comd.m to generate the plots of the command responses

evalsys0.m (evalsysl.m) ...........................................................

• MATLAB script file for generating system matrices used in the ADS-33C evaluation

file evalhovr, m (evalford. m).

• INPUTS:

f01_g2r2.mat (fl5_g2r2.mat) UH-60 state model linearized from nonlinear sim-

ulation program output.

K, the state feedback matrix from the file kmataltO.mat (kmataltl.mat).

• OUTPUTS:

Aeval, Ceval with outputs: p, q, r, u, v, 2, ¢, 8, ¢, x, y, z.

Bgust, Dgust with inputs in the principal gust directions

Bcmd, Dcmd with input terms in the order: pitch, roll, yaw rate, heave, yaw,
altitude.

(], D with standard control inputs: 50, 5s, 5c, and 6TR.
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fabsylo0.m (fabsylol.m) ...........................................................

• This MATLAB script file doesa LuenbergerObserveroutput feedbackcontroller
designvia CLTR.

• INPUTS:

f01_g2r2.mat (fl5_g2r2.mat) contains the UH-60 system model for the appro-

priate flight condition.

kmatalt0.mat (kmataltl.mat) is the file containing the K matrix from the state
feedback solution.

• OUTPUTS:

Luenberger Observer dynamics matrices: [Alc,Blc,Clc,Glc,Plc].

fabsylo0.mat (fabsylol.mat) is the file containing these matrices.

Plots of responses.

• CALLS TO:

makidea0.m (makideal.m) produces the ideal response/feedforward.

ad2delay.m adds 4 actuator delays to the system model.

adodelay.m adds 12 sensor delays to the system model.

scb.m computes the Special Coordinate Basis (SCB) for the given dynamics.

lqrcross.m solves for state feedback gains via partitioning the Hamiltonian matrix.

uh60comd.m is a script file for plotting the responses to an input.

fabrolo0.m (fabrolol.m) ...........................................................

• MATLAB script file for robust analysis of Luenberger Observer-based controller gen-

erated in fabsyloO (fabsylo l).

• INPUTS:

fabsylo0.mat (fabsylol.mat) , the data files containing the Luenberger Observer-
based controller.

• OUTPUTS:

Multiloop actuator phase/gain margins

Single Loop actuator phase and gain margins

Single Loop sensor phase and gain margins

• CALLS TO:

gainloci computes gain margins for single loop.

phasloci computes phase margins for single loop.
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evalosy0.m (evalosyl.m) ...........................................................

• MATLAB scriptfileto generatesystemdynamicsmatricesfromLuenbergerObserver-
basedcontrollerfor usein evalhovr.m (evalford.m).

• INPUTS:

fabsylo0.mat (fabsylol.mat) the source data on the Luenberger Observer-based
controller.

• OUTPUTS:

Aeval, Ceval with outputs: p, q, r, u, v, _, ¢, 0, ¢, x, y, z.

Bgust, Dgust with inputs in the principal gust directions

Bcmd, Dcmd with input terms in the order: pitch, roll, yaw rate, heave, yaw,
altitude.

G, D with standard control inputs: 50, 5s, 5c, and 6TR.

fabsyro0.m (fabsyrol.m) ..........................................................

MATLAB script file to take the balanced realization of a Luenberger Observer based

controller and look at its command responses. Internal straps allow 10th, 14th, or
25th order controller.

• INPUTS:

balrdlo0.mat (balrdlol.mat) is the data file containing the balanced realization

of the Luenberger system [Alc,Blc,Clc,Glc,Plc]

f01_g2r2.mat (fl5_g2r2.mat) contains the UH-60 system model for the appro-

priate flight condition.

• OUTPUTS:

Plots of responses.

• CALLS TO:

makidea0.m (makideal.m) produces the ideal response/feedforward.

ad2delay.m adds 4 actuator delays to the system model.

adodelay.m adds 12 sensor delays to the system model.

scb.m computes the Special Coordinate Basis (SCB) for the given dynamics.

uh60comd.m is a script file for plotting the responses to an input.
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fabroro0.m (fabrorol.m) ..........................................................

• MATLAB script file to performrobustanalysisof reducedorder Luenberger-based
controller.Internal strapsallow25th or 14th order.

• INPUTS:

balrdlo0.mat (balrdlol.mat) , the data files containing the balanced Luenberger
Observer-based controller.

fabsylo0.mat (fabsylol.mat) , the data files containing the Luenberger Observer-
based controller.

• OUTPUTS:

Multiloop actuator phase/gain margins

Single Loop actuator phase and gain margins

Single Loop sensor phase and gain margins

• CALLS TO:

gainloci computes gain margins for single loop.

phasloci computes phase margins for single loop.

evalros0.m (evalrosl.m) ...........................................................

MATLAB script file to generate system dynamics matrices from a balanced and

reduced Luenberger Observer-based controller for use in evalhovr.m (evalford.m).

Straps for setting the reduction at 6th, 14th, and 25th order are available.

• INPUTS:

fabsylo0.mat (fabsylol.mat) the source data on the Luenberger Observer-based
controller.

balrdlo0.mat (balrdlol.mat) the source data for a balanced Luenberger Observer-
based controller.

sanltre0o.m (sanltrelo.m) the source files for the 7th order reduced feedforward.

OUTPUTS:

Aeval, Ceval with outputs: p, q, r, u, v, 2, ¢, 8, ¢, x, y, z.

Bgust, Dgust with inputs in the principal gust directions

Bcmd, Dcmd with input terms in the order: pitch, roll, yaw rate, heave, yaw,
altitude.

G, D with standard control inputs: 5o, 5s, 5c, and 5TR.
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sanltrfO.m (sanltrfl.m) ............................................................

• MATLAB script file to assemblereferencesystemdynamicsandcontroller(basedon
a 14thorderobserverbasedon a reducedLuenbergerobserver)set-up for SANDY
run. This SANDYrun is to minimizethewhite noiseresponseerror (includesshaped
white noise)betweenthe full_)rder Luenbergerobserver-baseddesignand the lower
ordercontroller.

• INPUTS:

balrdlo0.mat (balrdlol.mat) is the data file containing the balanced realization

of the Luenberger system [Alc,Blc,Clc,Glc,Plc]

sanltre0o.m (sanltrelo.m) which contain the 7th order reduced and recovered

feedforward dynamics.

makidea0.m (makideal.m) is the script file that produces the ideal closed-loop

system response dynamics [Aideal,Bideal,Cideal,Dideal].

• OUTPUTS:

Plots of the closed-loop response using the reference controller for verification.

Plots of the closed-loop response using the initial guess of the reduced controller for
verification.

sanltrf0.mat (sanltrfl.mat) Reference and controller matrices in the plant--controller

format acceptable to SANDY. The SANDY input file sanltrf0.dat (sanltrfl.dat)
was eventually produced from this.

• CALLS TO:

rmodal.m real-valued eigenvalues and eigenvectors_complex eigenvalues show up as
2x2 blocks.

uh60comd.m is a script file for plotting the responses to an input.
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sanltrh0.m (sanitrhl.m) ...........................................................

MATLAB script file to assemblea referencesystembasedon statefeedbackon the
UH 60aswellasopenloopUH40 dynamics.The open-loopdynamicsof therefer-
encewill beclosedby an initial controllerguessandtherecoveryerrordefinedby the
differencein responsebetweenthe state-feedbackbasedsystemand the 14thorder
observer-basedcontrollerstabilizedsystemgiventhesamedisturbanceinputs.

• INPUTS:

sanltrf0.m (sanltrfl.m) is the data file containing the initial controller guess (from

the model matching run).

sanltre0o.m (sanltrelo.m) which contain the 7th order reduced and recovered

feedforward dynamics.

kmatalt0.mat (kmataltl.mat) is the file containing the K matrix from the state
feedback solution.

f01_g2r2.mat (fl5_g2r2.mat) contains the UH-60 system model for the appro-

priate flight condition.

• OUTPUTS:

Plots of the closed-loop response using the reference controller for verification.

Plots of the closed-loop response using the initial guess of the reduced controller for
verification.

sanltrh0.mat (sanltrhl.mat) Reference and controller matrices in the plant--controller

format acceptable to SANDY. The SANDY input file sanltrh0.dat (sanltrhl.dat)

was eventually produced from this.

• CALLS TO:

rmodal.m real-valued eigenvalues and eigenvectors-complex eigenvalues show up as
2x2 blocks.

uh60comd.m is a script file for plotting the responses to an input.

ad2delay.m adds 4 actuator delays to the system model.

adodelay.m adds 12 sensor delays to the system model.
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fabrolr0.m (fabrolrl.m) ............................................................

• MATLAB script file to perform robust analysis of a recovered 14th order controller

originally reduced from the Luenberger Observer design. Also strapped for possible

use of the numerical CLTR design.

• INPUTS:

f01_g2r2.mat (f15_g2r2.mat) contains the UH-60 system model for the appro-

priate flight condition.

sanltrf0n.m (sanltrfln.m) which contain the recovered and reduced 14th order

controller component (sanltrh0n.m and sanltrhln.m are used given a strap set-

ting).

sanltre0o.m (sanltrelo.m) which contain the 7th order reduced and recovered

feedforward dynamics.

• OUTPUTS:

Multiloop actuator phase/gain margins

Single Loop actuator phase and gain margins

Single Loop sensor phase and gain margins

• CALLS TO:

ad2delay.m adds 4 actuator delays to the system model.

adodelay.m adds 12 sensor delays to the system model.

gainloci.m computes gain margins for single loop.

phasloci.m computes phase margins for single loop.
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evaltrf0.m (evaltrfl.m) ............................................................

MATLAB script file to generatesystemdynamicsmatricesfrom a balancedreduced
and recovered14thorder controllerbasedon the LuenbergerObserverbasedcon-
troller. Output for usein evaIhovr.m (evalford.m). Does some response plotting to
verify that a proper assembly of a closed-loop system has been made.

• INPUTS:

f01_g2r2.mat (f15_g2r2.mat) contains the UH-60 system model for the appro-
priate flight condition.

sanltrf0n.m (sanltrfln.m) which contain the recovered and reduced 14th order

controller component.

sanltre0o.m (snaltrelo.m) which contain the 7th order reduced and recovered

feedforward dynamics.

• OUTPUTS:

Aeval, Ceval with outputs: p, q, r, u, v, _, ¢, 0, ¢, x, y, z.

Bgust, Dgust with inputs in the principal gust directions

Bcmd, Dcmd with input terms in the order: pitch, roll, yaw rate, heave, yaw,
altitude.

C,, D with standard control inputs: 50, 5s, 5c, and 5TR.

uh60eomd.m is a script file for plotting the responses to an input.
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evaltrh0.m (evaltrhl.m) ...........................................................

MATLAB script file to generatesystemdynamicsmatricesfrom a balancedreduced
andCLTR recovered14thordercontrollerbasedon the LuenbergerObserver-based
controller. Output for usein evalhovr.m (evalford.m). Does some response plotting

to verify that a proper assembly of a closed-loop system has been made.

• INPUTS:

f01_g2r2.mat (fl5_g2r2.mat) contains the UH-60 system model for the appro-

priate flight condition.

sanltrh0n.m (sanltrhln.m) which contain the recovered and reduced 14th order

controller component.

sanltre0o.m (snaltrelo.m) which contain the 7th order reduced and recovered

feedforward dynamics.

• OUTPUTS:

Aeval, Ceval with outputs: p, q, r, u, v, 2, ¢, 0, ¢, x, y, z.

Bgust, Dgust with inputs in the principal gust directions

Bcmd_ Dcmd with input terms in the order: pitch, roll, yaw rate, heave, yaw,
altitude.

G, D with standard control inputs: 5o, 5s, 5c, and 5TR.

uh60comd.m is a script file for plotting the responses to an input.
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sanl4do0.m (san14dol.m) ........................................................

• MATLAB script fileto assembleplant andcontrollermatricesfor adirectoptimization
run. Thecontrollerform is the sameasfor therecoverycases:14thorderLuenberger
observerwith integralcontroland7th order feedforward dynamics.

• INPUTS:

sanltrf0.m (sanltrfl.m) is the data file containing the initial controller guess (from

the model matching run).

sanltre0o.m (sanltrelo.m) which contain the 7th order reduced and recovered

feedforward dynamics.

f01_.g2r2.mat (fl5_g2r2.mat) contains the UH-60 system model for the appro-

priate flight condition.

• OUTPUTS:

Plots of the closed-loop response using the initial guess of the controller for verifica-
tion.

sanl4do0.mat (sanl4dol.mat) Reference and controller matrices in the plant--

controller format acceptable to SANDY. The SANDY input file sanl4do0.dat
(sanl4dol.dat) was eventually produced from this.

• CALLS TO:

uh60comd.m is a script file for plotting the responses to an input.

ad2delay.m adds 4 actuator delays to the system model.

adodelay.m adds 12 sensor delays to the system model.
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fabrodo0.m (fabrodol.m) .........................................................

• MATLAB script file to performrobustanalysisof a 14thordercontrollerproduced
by directoptimization.

• INPUTS:

f01_g2r2.mat (fl5_g2r2.mat) contains the UH-60 system model for the appro-

priate flight condition.

sanl4do0n.m (sanl4doln.m) which contain the optimized 14th order controller

component.

sanltre0o.m (sanltrelo.m) which contain the 7th order reduced and recovered

feedforward dynamics.

• OUTPUTS:

Multiloop actuator phase/gain margins

Single Loop actuator phase and gain margins

Single Loop sensor phase and gain margins

• CALLS TO:

ad2delay.m adds 4 actuator delays to the system model.

adodelay.m adds 12 sensor delays to the system model.

gainloci.m computes gain margins for single loop.

phasloci.m computes phase margins for single loop.
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eval4do0.m (eva14dol.m) .........................................................

MATLAB script file to generatesystemdynamicsmatricesfrom a directoptimized
14thordercontrollerbasedon theLuenbergerObserver-basedcontroller.Output for
usein evalhovr.m (evalford.m). Does some response plotting to verify that a proper

assembly of a closed-loop system has been made.

• INPUTS:

f01_g2r2.mat (fl5_g2r2.mat) contains the UH-60 system model for the appro-

priate flight condition.

sanl4do0n.m (san14doln.m) which contain the recovered and reduced 14th order

controller component.

sanltre0o.m (snaltrelo.m) which contain the 7th order reduced and recovered
feedforward dynamics.

• OUTPUTS:

Aeval_ Ceval with outputs: p, q, r, u, v, _, ¢, 8, ¢, x, y, z.

Bgust, Dgust with inputs in the principal gust directions

Bcmd, Dcmd with input terms in the order: pitch, roll, yaw rate, heave, yaw,
altitude.

G, D with standard control inputs: 50, 5s, 5c, and 5TR.

uh60comd.m is a script file for plotting the responses to an input.
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evalhovr.m (evalford.m) ...........................................................

• MATLAB script file for evaluating system matrices for the ADS-33C hover (forward
flight) requirements.

• INPUTS:

Output from appropriate evaluation setup m file (these files start with the word

"eval").

Test parameters contained within the evaluation file

• OUTPUTS:

Test evaluations for many of the ADS-33C requirements

• SUPPORT ROUTINES: Because the number of routines used in these files is large

and they are specific to them, they are listed here. Details of each will follow this list.

bandwdth determines bandwidth from system matrices in a manner similar to, yet
unlike classical methods.

peakmmax evaluates transient and steady-state behavior of output trace (Y).

passit evaluates a point to see if it is to the right of a given curve.

getlstor does an optimization of a given curve trace to a first order response by

adjusting the magnitude, delay and time constant.

getlstda returns the RMS error between a given curve trace and a trial first order
fit.

pulshold checks compliance to ADS-33C 3.2.6 by analyzing response to an actuator

pulse (hover only).

fig5_3_4 does a test based on whether a criterion (either bank angle oscillations (Fig

5 of ADS-33C), sideslip excursion (Fig 6 of ADS-33C), or a sort of scaled sideslip
excursion (Fig 7 of ADS-33C) is acceptable.

fi99_3_4 checks damping ratio and stability criteria given a sigma_omega pair.

text934 Reports in text the results from the evaluation done in fi99_3_4.
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bandwdth.m .........................................................................

• [Wl80,Wgain,Wphase,Tphase]= bandwdth(Acl,Bcmd,Ccmd,Dcmd,dispflag)
MATLAB function to determinebandwidthcompatiblewith definition in mil stan-
dard ADS-33C,Figure2(3.3).This functionrequiresthe closed-loopsystemmatrix,
the relevantcommandinput, and the relevantcontrolledoutput (only 1 each). A
Bodeplot of the systemgain andphaseof X/Xcmd is made.The frequencyat the
phase=180point is found.Wphaseis the frequencyat a marginof 45deg.fromthat.
Wgainis the frequency6dBhigherthan the magnitudeat W180.

• INPUTS:

Acl,Bcmd,Ccmd,Dcmd are the system matrices for bandwidth determination. The

loop is closed, and only one input, one output.

dispflag controls verifying the results with a plot the user can see with the 180

frequency and the phase and gain frequencies marked.

• OUTPUTS:

WlS0 is the frequency at which the phase is 180 degrees

Wgain is the frequency at which the magnitude is 6db up from that at W180.

Wphase is the frequency at which the phase is 135 degrees

Tphase is known as the phase delay, which is the slope of the phase curve between

W180 and the frequency where the phase lags an additional 180 degrees.

peakmmax.m ........................................................................

• [Ymax,Tmax,Ymin,Tn_n,Ymax2,Tmax2,Yavg] = peakmmax(Ytrace)

Evaluates transient and steady behavior of trace. Trace assumed to be step response

with analysis of overshoot and undershoot. Tries (presently without sophistication)
to estimate steady state value of the trace. With all of this, the standard functions

imax/, and ifind/, need alternate means. With all of this, this function does not ever

try to extrapolate to find Yavg, since that can get one into severe trouble. Tmax and

Tmin are indices into Ytrace where the respective max and min values are located.

• INPUTS:

Ytrace is the step response.

• OUTPUTS:

Ymax is the peak maximum.

Tmax is the index into Ytrace where the value is assumed.

Ymin is the first minimum after Ymax.

Tmin is the index into Ytrace where the value Ymin is assumed.

Ymax2 is the next local maximum after Ymin.

Tmax2 is the index into Ytrace where the value is Ymax2 assumed.

Yavg is the estimated steady-state value.
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passit.m ..............................................................................

status= passit(curve,point)

This function tests to see if a point is to the right of the given curve. If so status is 1,

if not, status is 0. In curve and point, the x coordinate is first, then y. The curve is

assumed non-closed. Linear extrapolations are done before the begin point and after

the end points based on the segments there.

• INPUTS:

curve is a set of points defining a curve. This curve could be closed, but in general
it is assumed non-closed.

point is the x,y coordinate of a point to be tested.

• OUTPUTS:

status is 1 if the point is to the right of the given curve, 0 if it is not.

pulshold.m ...........................................................................

quepasa = pulshold(Ttrace,Ytrace)

Checks compliance with 3.2.6 of ADS-33C (Handling Qualities for Military Rotocraft).

Ytrace is a response to an actuator pulse. To pass (0 return), it is to rise, then fall

to less than 10peak value within 10 seconds (hence the time trace needed too). It is

to stay below this 10% for another 30 seconds. UCE=I needs 10% settle within only

20 seconds, this is checked too if the original settle is not met. The return condition

will be -1 here. It is best to supply around 60 seconds of data (only 50 absolutely
necessary). Failure is a return condition of 1.

• INPUTS:

Ytrace is the response to an actuator pulse.

Ttrace is the corresponding time trace.

• OUTPUTS:

quepasa is set to 0 if the trace passes the requirement, 1 if it does not.
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getlstor.m ...........................................................................

[Mag,Delay,Tconst,corrsq]= getlstor( Times,Ydata )
Doesfirst orderfit y(t+Delay) = Mag*(1-exp(t/Tconst)) to given data. Computes

a sort of chi-squared sense that indicates how well the fit actually behaved. This

procedure is presented in Figure 8(3.3) of ADS-33C. This routine calls the MATLAB

function nelder which will in turn call getlstda, which generates data for the opti-

mization routine. The common block: global ydata Tset Nset must be present in
the root m-file.

• INPUTS:

Ydata is the function trace.

Times is the corresponding time trace.

• OUTPUTS:

Mag is the magnitude of the first order function.

Delay is the time delay to the nominal zero point for this first-order function.

Tconst is the time constant.

corrsq is the ratio of the squares of the fitted curve and the raw data about the

mean.

getlstda.m ...........................................................................

• error = getlstda( params )

Returns error from latest set of first order function parameter fit. Parameters are:

Mag, time delay, and time constant, in that order for the params vector The common

block: global ydata Tset Nset must be present in the root m-file.

• INPUTS:

params is a 3_element vector whose meanings are: Magnitude of first-order function,
time delay, and time constant.

• OUTPUTS:

error is the RMS error between the data and the fitting function.
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nelder.m .............................................................................

Ix, iterats]= nelder(errorfn,parmlist,tol,prnt)
nelder is a nonlinear optimization function (the Nelder-Mead Simplex algorithm)

that tries to adjust the given parameter vector in order to minimize the output of the

argument function errorfn. This is often a library function within MATLAB, but not

always, hence its inclusion here.

• INPUTS:

errorfn is a user-defined function which uses the parmlist entry in the nelder com-

mand line to return the associated value of the cost function. The actual argu-

ment entry is the name of this function's m-file (which should be the name of

the function as well).

parmlist is the parameter list (array). The actual meanings of the individual ele-

ments depends on your error_ as nelder derives the relationships of the individual

terms to the cost.

tol is the stopping tolerance (defaults to 1.0e-3).

prnt will describe each step if set to a nonzero value (defaults to 0).

• OUTPUTS:

iterats is the number of iterations (this argument is optional).

x is the optimized parameter list (same length as input).

fig5_3_4.m ...........................................................................

[passit] = fig5-3-4(RR2betaP,RollLag,PhOSCAV,LineSpec)

Uses function passit to evaluate input criteria and outputs what level performance

they represent as per Figure 5(3.4) of the ADS-33C rotocraft handling specs. Also

evaluate as per Figure 6(3.4) and Figure 7(3.4) given different values of LineSpec (the

raw criterion data). Will detect whether one has one curve or two (4 cols versus 2).

For use in forward flight tests only.

• INPUTS:

RR2betaP is nominally the roll rate to sideslip phase angle.

RollLag is the component of an oscillation cycle needed to reach the first maximum

of an overshoot response in the lateral-directional oscillation.

PhOSCAV is either the roll oscillation envelope size or the sideslip oscillation peak

normalized by the roll oscillation peak.

LineSpec is the specific test characteristic line using these criteria.

• OUTPUTS:

passit is set to 1, 2, or 3, according to what criteria are met.
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fig9-3_4.m ...........................................................................

[result] = fig9_3-4( sigma, omega )

returns 1 if meets the all MTE specs on sigma and omega according to Figure 9(3.4)
of ADS-33C, which examines known lateral-directional modes. Returns 2 for Level I

(all MTE but slalom, ground attack and air combat), Level II for these. Returns 3 for

Level III for slalom, ground attack, and air combat, Level II for all others, Returns 4

for Level III all around, and 5 for unstable. Used in forward flight analysis only.

• INPUTS:

sigma,omega are the real and complex parts of the eigenvalue under consideration.

• OUTPUTS:

result is a simple number from 1 to 5, according to the above description.

text934.m ............................................................................

text934( result )

Displays appropriate text string according to number handed it. number same series

as in the fig9-3...4 evaluation routine. Used in forward flight analysis only.

• INPUTS:

result is the result from the fi99-3-4 routine.

• OUTPUTS:

Text to screen to describe result.
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Appendix G

UH-60 Rotocraft Models

(Chapter 7)

f01_g2r2.mat (Hover) ............................................................

• 31 state model linearized from nonlinear simulation program output

p, q, r Body axis attitude rates (deg/s)

u, v, w Body axis velocities (if/s)

8=, 0y, 8z Euler angles (deg) from terrestrial to

rotocraft axes (pitch, roll, yaw)

X, y, Z

_0, _D,

_IS, _1C"

_o, #D,

_IS, _lC

Inertial positions (ft)

Rotor flapping rates (deg/s)

Rotor lead-lag rates (deg/s)

/_0,/_D, Rotor flapping angles (deg)

¢o, CD, Rotor lead-lag angles (deg)
_IS, _IC,

),o, AlS, Inflow velocities (1/sec) These are normalized

_Ic by the rotor radius (26.83ft)

• Flight condition point: 1 knot forward velocity. Additional environmental parameters

associated with this flight condition: air density 0.002377 slug/cubic foot; rotor speed
27 rad/s; and gross weight 16,800 lbs

• Dynamics matrix F

• Control and disturbance input distribution G

• CONTROL INPUTS (deg): 50 (collective), 5s (sine), 5c (cosine), and 5TR (tail rotor)

• DISTURBANCE INPUTS (if/s): Vg=, Vgy, and Vgz, gusts from the principal terres-
trial frame directions

PAGE /-"/'*d_Tf_"r;;,_T_'^,'"_ ' P:. !},,_"
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fl5_g2r2.mat (Forward Flight) ................................................

• 31 state model linearized from nonlinear simulation program output

• Flight condition point: 15 knot forward velocity. Additional environmental parame-

ters associated with this flight condition: air density 0.002377 slug/cubic foot; rotor

speed 27 rad/s; and gross weight 16,800 lbs

• System dynamics matrix F

• Control and disturbance input distribution G

• All other details same as for hover model.
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Appendix H

JPL Large Space Structure Design

Files (Chapter 4)

lscllsim.m ...........................................................................

• MATLAB script file for running closed and open loop system dynamics through sta-

bility test. Runs stability test mentioned in Chapter 4, the structure is pulsed for 6.4

seconds, then allowed to free oscillate. Also gives eigenvalues of closed loop system.

• INPUTS:

lsclnew.mat is the data file for the open loop antenna structure.

lscl4m5c.m is the SANDY controller output file normally used. Its contents have

been copied into Iscllsim.m.

• OUTPUTS:

Eigenvalues of the closed loop system

Plots of the rundown responses at the two hub sensors of the antenna for both open
and closed loop.

lscl3m5.dat ..........................................................................

SANDY input file that eventually produced final controller. Contains weights, distur-

bance profile, and starting condition details.
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Appendix I

JPL Large Space Structure Model

(Chapter 4)

lsclnew.mat .........................................................................

* MATLAB binary data file for linearized and reduced antenna model

• System matrices a, b, c, d

• 20th order model; all modes stable, most modes lightly damped (damping 0.007 to

0.01)

• 6 inputs: HA1 and HAlO for hub actuators; RA1, RA4, RA7 and RAIO for rib root
actuators

• 6 outputs: HS1 and HSIO for hub sensors; RS1, RS4, RS7 and RSIO for rib root

sensors

• All sensors collocated with corresponding actuators

• All actuator inputs in Newton-meters

• All sensor outputs in radians

Pll__ PA_E EILAi'JKNOT FILMED
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Appendix J

One-Dimensional Rotocraft

Design Files (Chapter 2.7.1)

helicm0.dat, helicml.dat, helicm2.dat, helicm3.dat ...........................

SANDY input files to run the 4 cases of initial condition versus gust response weighting.

Weights of 0, 0.1, 1.0 and 10. on the initial conditions are used.

helilr0.dat, helilrl.dat, helilr2.dat, helilr3.dat .................................

SANDY input files to run the 4 cases of loop recovery where the actuator reliance is

lessened by injecting fictitious noise there. Weights of 0, 0.1, 1.0, and 10. are used for

this actuator noise. Files are input files for both regular (H 2) and worst-case versions of

SANDY.

heHcm.m .............................................................................

• MATLAB script file for analyzing H 2 versus worst_case algorithm performance for

a series of designs involving increasing degrees of stability augmentation over distur-

bance rejection.

• INPUTS:

helild.mat is the MATLAB_compatible data file for the basic open-loop one-dimensional

helicopter model.

helicm0h.m, helicmlh.m, helicm2h.m, helicm3h.m are the H 2 design output

files from their respective SANDY runs.

helicm0w.m, helicmlw.m, helicm2w.m, helicm3w.m are the worst_ase design

output files from their respective WCSANDY runs.

• OUTPUTS:

RMS values of disturbance responses for displacement and pitch

Gain margins of the closed loop system for the 8 cases.

Phase margins of the closed loop system for the 8 cases.

Plots of the command responses to a position (X) change.
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helilr.m ...............................................................................

• MATLAB script file for analyzingH 2 versus worst_case algorithm performance for a

series of designs involving increasing degrees of actuator_)riented loop recovery over

disturbance rejection.

• INPUTS:

helild.mat is the MATLAB-compatible data file for the basic open-loop one-dimensional

helicopter model.

helilr0h.m, helilrlh.m, helilr2h.m, helUr3h.m are the H 2 design output files

from their respective SANDY runs.

helilr0w.m, helUrlw.m, helilr2w.m, helilr3w.m are the worst_case design out-

put files from their respective WCSANDY runs.

• OUTPUTS:

RMS values of disturbance responses for displacement and pitch

Gain margins of the closed loop system for the 8 cases.

Phase margins of the closed loop system for the 8 cases.

Plots of the command responses to a position (X) change.
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